

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Scrapy 0.12.0 documentation

Scrapy 0.12 documentation

This documentation contains everything you need to know about Scrapy.

Getting help

Having trouble? We’d like to help!

	Try the FAQ – it’s got answers to some common questions.

	Looking for specific information? Try the Index or Module Index.

	Search for information in the archives of the scrapy-users mailing list [http://groups.google.com/group/scrapy-users/], or
post a question [http://groups.google.com/group/scrapy-users/].

	Ask a question in the #scrapy IRC channel.

	Report bugs with Scrapy in our ticket tracker [http://dev.scrapy.org/].

First steps

	Scrapy at a glance

	Understand what Scrapy is and how it can help you.

	Installation guide

	Get Scrapy installed on your computer.

	Scrapy Tutorial

	Write your first Scrapy project.

Scraping basics

	Command line tool

	Learn about the command-line tool used to manage your Scrapy project.

	Items

	Define the data you want to scrape.

	Spiders

	Write the rules to crawl your websites.

	XPath Selectors

	Extract the data from web pages.

	Scrapy shell

	Test your extraction code in an interactive environment.

	Item Loaders

	Populate your items with the extracted data.

	Item Pipeline

	Post-process and store your scraped data.

	Feed exports

	Output your scraped data using different formats and storages.

Built-in services

	Logging

	Understand the simple logging facility provided by Scrapy.

	Stats Collection

	Collect statistics about your scraping crawler.

	Sending e-mail

	Send email notifications when certain events occur.

	Telnet Console

	Inspect a running crawler using a built-in Python console.

	Web Service

	Monitor and control a crawler using a web service.

Solving specific problems

	Frequently Asked Questions

	Get answers to most frequently asked questions.

	Using Firefox for scraping

	Learn how to scrape with Firefox and some useful add-ons.

	Using Firebug for scraping

	Learn how to scrape efficiently using Firebug.

	Debugging memory leaks

	Learn how to find and get rid of memory leaks in your crawler.

	Downloading Item Images

	Download static images associated with your scraped items.

	Ubuntu packages

	Install latest Scrapy packages easily on Ubuntu

	Scrapy Service (scrapyd)

	Deploying your Scrapy project in production.

Extending Scrapy

	Architecture overview

	Understand the Scrapy architecture.

	Downloader Middleware

	Customize how pages get requested and downloaded.

	Spider Middleware

	Customize the input and output of your spiders.

	Extensions

	Add any custom functionality using signals and the
Scrapy API

Reference

	Command line tool

	Learn about the command-line tool and see all available commands.

	Requests and Responses

	Understand the classes used to represent HTTP requests and responses.

	Settings

	Learn how to configure Scrapy and see all available settings.

	Signals

	See all available signals and how to work with them.

	Exceptions

	See all available exceptions and their meaning.

	Item Exporters

	Quickly export your scraped items to a file (XML, CSV, etc).

All the rest

	Contributing to Scrapy

	Learn how to contribute to the Scrapy project.

	Versioning and API Stability

	Understand Scrapy versioning and API stability.

	Experimental features

	Learn about bleeding-edge features.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Scrapy at a glance

Scrapy is an application framework for crawling web sites and extracting
structured data which can be used for a wide range of useful applications, like
data mining, information processing or historical archival.

Even though Scrapy was originally designed for screen scraping [http://en.wikipedia.org/wiki/Screen_scraping] (more
precisely, web scraping [http://en.wikipedia.org/wiki/Web_scraping]), it can also be used to extract data using APIs
(such as Amazon Associates Web Services [http://aws.amazon.com/associates/]) or as a general purpose web
crawler.

The purpose of this document is to introduce you to the concepts behind Scrapy
so you can get an idea of how it works and decide if Scrapy is what you need.

When you’re ready to start a project, you can start with the tutorial.

Pick a website

So you need to extract some information from a website, but the website doesn’t
provide any API or mechanism to access that info programmatically. Scrapy can
help you extract that information.

Let’s say we want to extract the URL, name, description and size of all torrent
files added today in the Mininova [http://www.mininova.org] site.

The list of all torrents added today can be found on this page:

http://www.mininova.org/today

Define the data you want to scrape

The first thing is to define the data we want to scrape. In Scrapy, this is
done through Scrapy Items (Torrent files, in this case).

This would be our Item:

from scrapy.item import Item, Field

class Torrent(Item):
 url = Field()
 name = Field()
 description = Field()
 size = Field()

Write a Spider to extract the data

The next thing is to write a Spider which defines the start URL
(http://www.mininova.org/today), the rules for following links and the rules
for extracting the data from pages.

If we take a look at that page content we’ll see that all torrent URLs are like
http://www.mininova.org/tor/NUMBER where NUMBER is an integer. We’ll use
that to construct the regular expression for the links to follow: /tor/\d+.

We’ll use XPath [http://www.w3.org/TR/xpath] for selecting the data to extract from the web page HTML
source. Let’s take one of those torrent pages:

http://www.mininova.org/tor/2657665

And look at the page HTML source to construct the XPath to select the data we
want which is: torrent name, description and size.

By looking at the page HTML source we can see that the file name is contained
inside a <h1> tag:

<h1>Home[2009][Eng]XviD-ovd</h1>

An XPath expression to extract the name could be:

//h1/text()

And the description is contained inside a <div> tag with id="description":

<h2>Description:</h2>

<div id="description">
"HOME" - a documentary film by Yann Arthus-Bertrand

"We are living in exceptional times. Scientists tell us that we have 10 years to change the way we live, avert the depletion of natural resources and the catastrophic evolution of the Earth's climate.

...

An XPath expression to select the description could be:

//div[@id='description']

Finally, the file size is contained in the second <p> tag inside the <div>
tag with id=specifications:

<div id="specifications">

<p>
Category:
Movies > Documentary
</p>

<p>
Total size:
699.79 megabyte</p>

An XPath expression to select the description could be:

//div[@id='specifications']/p[2]/text()[2]

For more information about XPath see the XPath reference [http://www.w3.org/TR/xpath].

Finally, here’s the spider code:

class MininovaSpider(CrawlSpider):

 name = 'mininova.org'
 allowed_domains = ['mininova.org']
 start_urls = ['http://www.mininova.org/today']
 rules = [Rule(SgmlLinkExtractor(allow=['/tor/\d+']), 'parse_torrent')]

 def parse_torrent(self, response):
 x = HtmlXPathSelector(response)

 torrent = TorrentItem()
 torrent['url'] = response.url
 torrent['name'] = x.select("//h1/text()").extract()
 torrent['description'] = x.select("//div[@id='description']").extract()
 torrent['size'] = x.select("//div[@id='info-left']/p[2]/text()[2]").extract()
 return torrent

For brevity’s sake, we intentionally left out the import statements. The
Torrent item is defined above.

Run the spider to extract the data

Finally, we’ll run the spider to crawl the site an output file
scraped_data.json with the scraped data in JSON format:

scrapy crawl mininova.org --set FEED_URI=scraped_data.json --set FEED_FORMAT=json

This uses feed exports to generate the JSON file.
You can easily change the export format (XML or CSV, for example) or the
storage backend (FTP or Amazon S3 [http://aws.amazon.com/s3/], for example).

You can also write an item pipeline to store the
items in a database very easily.

Review scraped data

If you check the scraped_data.json file after the process finishes, you’ll
see the scraped items there:

[{"url": "http://www.mininova.org/tor/2657665", "name": ["Home[2009][Eng]XviD-ovd"], "description": ["HOME - a documentary film by ..."], "size": ["699.69 megabyte"]},
... other items ...
]

You’ll notice that all field values (except for the url which was assigned
directly) are actually lists. This is because the selectors return lists. You may want to store single values, or
perform some additional parsing/cleansing to the values. That’s what
Item Loaders are for.

What else?

You’ve seen how to extract and store items from a website using Scrapy, but
this is just the surface. Scrapy provides a lot of powerful features for making
scraping easy and efficient, such as:

	Built-in support for selecting and extracting data
from HTML and XML sources

	Built-in support for cleaning and sanitizing the scraped data using a
collection of reusable filters (called Item Loaders)
shared between all the spiders.

	Built-in support for generating feed exports in
multiple formats (JSON, CSV, XML) and storing them in multiple backends (FTP,
S3, local filesystem)

	A media pipeline for automatically downloading images
(or any other media) associated with the scraped items

	Support for extending Scrapy by plugging
your own functionality using signals and a
well-defined API (middlewares, extensions, and
pipelines).

	Wide range of built-in middlewares and extensions for:
	cookies and session handling

	HTTP compression

	HTTP authentication

	HTTP cache

	user-agent spoofing

	robots.txt

	crawl depth restriction

	and more

	Robust encoding support and auto-detection, for dealing with foreign,
non-standard and broken encoding declarations.

	Extensible stats collection for multiple spider
metrics, useful for monitoring the performance of your spiders and detecting
when they get broken

	An Interactive shell console for trying XPaths, very
useful for writing and debugging your spiders

	A System service designed to ease the deployment and
run of your spiders in production.

	A built-in Web service for monitoring and
controlling your bot

	A Telnet console for hooking into a Python
console running inside your Scrapy process, to introspect and debug your
crawler

	Logging facility that you can hook on to for catching
errors during the scraping process.

What’s next?

The next obvious steps are for you to download Scrapy [http://scrapy.org/download/], read the
tutorial and join the community [http://scrapy.org/community/]. Thanks for your
interest!

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Installation guide

This document describes how to install Scrapy on Linux, Windows and Mac OS X.

Requirements

	Python [http://www.python.org] 2.5, 2.6, 2.7 (3.x is not yet supported)

	Twisted [http://twistedmatrix.com] 2.5.0, 8.0 or above (Windows users: you’ll need to install
Zope.Interface [http://pypi.python.org/pypi/zope.interface#download] and maybe pywin32 [http://sourceforge.net/projects/pywin32/] because of this Twisted bug [http://twistedmatrix.com/trac/ticket/3707])

	lxml [http://codespeak.net/lxml/] or libxml2 [http://xmlsoft.org] (if using libxml2 [http://xmlsoft.org], version 2.6.28 or above is highly recommended)

	simplejson [http://pypi.python.org/pypi/simplejson/] (not required if using Python 2.6 or above)

	pyopenssl [http://pyopenssl.sourceforge.net] (for HTTPS support. Optional,
but highly recommended)

Install Python

First, you need to install Python, if you haven’t done so already.

Scrapy works with Python 2.5, 2.6 or 2.7, which you can get at
http://www.python.org/download/

See also

What Python versions does Scrapy support?

Install Scrapy

There are many ways to install Scrapy. Pick the one you feel more comfortable
with.

	Download and install an official release (requires installing dependencies separately)

	Installing with easy_install (automatically installs dependencies)

	Installing with pip (automatically installs dependencies)

Download and install an official release

Download Scrapy from the Download page [http://scrapy.org/download/]. Scrapy is distributed in two ways: a
source code tarball (for Unix and Mac OS X systems) and a Windows installer
(for Windows). If you downloaded the tarball, you can install it as any Python
package using setup.py:

tar zxf Scrapy-X.X.X.tar.gz
cd Scrapy-X.X.X
python setup.py install

If you downloaded the Windows installer, just run it.

Warning

In Windows, you may need to add the C:\Python25\Scripts (or
C:\Python26\Scripts) folder to the system path by adding that directory
to the PATH environment variable from the Control Panel [http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/sysdm_advancd_environmnt_addchange_variable.mspx].

Installing with easy_install

You can install Scrapy using setuptools [http://pypi.python.org/pypi/setuptools]‘s easy_install with:

easy_install -U Scrapy

Installing with pip [http://pypi.python.org/pypi/pip]

You can install Scrapy using pip [http://pypi.python.org/pypi/pip] with:

pip install Scrapy

Platform specific instructions

Linux

Ubuntu 9.10 or above

If you’re running Ubuntu 9.10 (or above), use the official Ubuntu
Packages, which already solve all dependencies for you and are
continuously updated with the latest bug fixes.

Debian or Ubuntu (9.04 or older)

If you’re running Debian Linux, run the following command as root:

apt-get install python-twisted python-libxml2 python-pyopenssl python-simplejson

And then follow the instructions in Install Scrapy.

Arch Linux

If you are running Arch Linux, run the following command as root:

pacman -S twisted libxml2 pyopenssl python-simplejson

And then follow the instructions in Install Scrapy.

Other Linux distros

The easiest way to install Scrapy in other Linux distros is through
easy_install, which will automatically install Twisted and lxml as
dependencies. See Installing with easy_install.

Another way would be to install dependencies, if you know the packages in your
distros that meets them. See Requirements.

Mac OS X

The easiest way to install Scrapy on Mac is through easy_install, which
will automatically install Twisted and lxml as dependencies.

See Installing with easy_install.

Windows

There are two ways to install Scrapy in Windows:

	using easy_install or pip - see Installing with easy_install or
Installing with pip

	using the Windows installer, but you need to download and install the
dependencies manually:
	Twisted for Windows [http://twistedmatrix.com/trac/wiki/Downloads] - you
may need to install pywin32 [http://sourceforge.net/projects/pywin32/] because of this Twisted bug [http://twistedmatrix.com/trac/ticket/3707]

	Install Zope.Interface [http://pypi.python.org/pypi/zope.interface#download] (required by Twisted)

	libxml2 for Windows [http://users.skynet.be/sbi/libxml-python/]

	PyOpenSSL for Windows [http://sourceforge.net/project/showfiles.php?group_id=31249]

	Download the Windows installer from the Downloads page [http://scrapy.org/download/] and install it.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Scrapy Tutorial

In this tutorial, we’ll assume that Scrapy is already installed on your system.
If that’s not the case, see Installation guide.

We are going to use Open directory project (dmoz) [http://www.dmoz.org/] as
our example domain to scrape.

This tutorial will walk you through these tasks:

	Creating a new Scrapy project

	Defining the Items you will extract

	Writing a spider to crawl a site and extract
Items

	Writing an Item Pipeline to store the
extracted Items

Scrapy is written in Python [http://www.python.org]. If you’re new to the language you might want to
start by getting an idea of what the language is like, to get the most out of
Scrapy. If you’re already familiar with other languages, and want to learn
Python quickly, we recommend Dive Into Python [http://www.diveintopython.org]. If you’re new to programming
and want to start with Python, take a look at this list of Python resources
for non-programmers [http://wiki.python.org/moin/BeginnersGuide/NonProgrammers].

Creating a project

Before you start scraping, you will have set up a new Scrapy project. Enter a
directory where you’d like to store your code and then run:

scrapy startproject dmoz

This will create a dmoz directory with the following contents:

dmoz/
 scrapy.cfg
 dmoz/
 __init__.py
 items.py
 pipelines.py
 settings.py
 spiders/
 __init__.py
 ...

These are basically:

	scrapy.cfg: the project configuration file

	dmoz/: the project’s python module, you’ll later import your code from
here.

	dmoz/items.py: the project’s items file.

	dmoz/pipelines.py: the project’s pipelines file.

	dmoz/settings.py: the project’s settings file.

	dmoz/spiders/: a directory where you’ll later put your spiders.

Defining our Item

Items are containers that will be loaded with the scraped data; they work
like simple python dicts but they offer some additional features like providing
default values.

They are declared by creating an scrapy.item.Item class an defining
its attributes as scrapy.item.Field objects, like you will in an ORM
(don’t worry if you’re not familiar with ORMs, you will see that this is an
easy task).

We begin by modeling the item that we will use to hold the sites data obtained
from dmoz.org, as we want to capture the name, url and description of the
sites, we define fields for each of these three attributes. To do that, we edit
items.py, found in the dmoz directory. Our Item class looks like this:

Define here the models for your scraped items

from scrapy.item import Item, Field

class DmozItem(Item):
 title = Field()
 link = Field()
 desc = Field()

This may seem complicated at first, but defining the item allows you to use other handy
components of Scrapy that need to know how your item looks like.

Our first Spider

Spiders are user-written classes used to scrape information from a domain (or group
of domains).

They define an initial list of URLs to download, how to follow links, and how
to parse the contents of those pages to extract items.

To create a Spider, you must subclass scrapy.spider.BaseSpider, and
define the three main, mandatory, attributes:

	name: identifies the Spider. It must be
unique, that is, you can’t set the same name for different Spiders.

	start_urls: is a list of URLs where the
Spider will begin to crawl from. So, the first pages downloaded will be those
listed here. The subsequent URLs will be generated successively from data
contained in the start URLs.

	parse() is a method of the spider, which will
be called with the downloaded Response object of each
start URL. The response is passed to the method as the first and only
argument.

This method is responsible for parsing the response data and extracting
scraped data (as scraped items) and more URLs to follow.

The parse() method is in charge of processing
the response and returning scraped data (as Item
objects) and more URLs to follow (as Request objects).

This is the code for our first Spider; save it in a file named
dmoz_spider.py under the dmoz/spiders directory:

from scrapy.spider import BaseSpider

class DmozSpider(BaseSpider):
 name = "dmoz.org"
 allowed_domains = ["dmoz.org"]
 start_urls = [
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
]

 def parse(self, response):
 filename = response.url.split("/")[-2]
 open(filename, 'wb').write(response.body)

Crawling

To put our spider to work, go to the project’s top level directory and run:

scrapy crawl dmoz.org

The crawl dmoz.org command runs the spider for the dmoz.org domain. You
will get an output similar to this:

2008-08-20 03:51:13-0300 [scrapy] INFO: Started project: dmoz
2008-08-20 03:51:13-0300 [dmoz] INFO: Enabled extensions: ...
2008-08-20 03:51:13-0300 [dmoz] INFO: Enabled scheduler middlewares: ...
2008-08-20 03:51:13-0300 [dmoz] INFO: Enabled downloader middlewares: ...
2008-08-20 03:51:13-0300 [dmoz] INFO: Enabled spider middlewares: ...
2008-08-20 03:51:13-0300 [dmoz] INFO: Enabled item pipelines: ...
2008-08-20 03:51:14-0300 [dmoz.org] INFO: Spider opened
2008-08-20 03:51:14-0300 [dmoz.org] DEBUG: Crawled <http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> (referer: <None>)
2008-08-20 03:51:14-0300 [dmoz.org] DEBUG: Crawled <http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: <None>)
2008-08-20 03:51:14-0300 [dmoz.org] INFO: Spider closed (finished)

Pay attention to the lines containing [dmoz.org], which corresponds to
our spider (identified by the domain "dmoz.org"). You can see a log line
for each URL defined in start_urls. Because these URLs are the starting
ones, they have no referrers, which is shown at the end of the log line,
where it says (referer: <None>).

But more interesting, as our parse method instructs, two files have been
created: Books and Resources, with the content of both URLs.

What just happened under the hood?

Scrapy creates scrapy.http.Request objects for each URL in the
start_urls attribute of the Spider, and assigns them the parse method of
the spider as their callback function.

These Requests are scheduled, then executed, and
scrapy.http.Response objects are returned and then fed back to the
spider, through the parse() method.

Extracting Items

Introduction to Selectors

There are several ways to extract data from web pages. Scrapy uses a mechanism
based on XPath [http://www.w3.org/TR/xpath] expressions called XPath selectors.
For more information about selectors and other extraction mechanisms see the
XPath selectors documentation.

Here are some examples of XPath expressions and their meanings:

	/html/head/title: selects the <title> element, inside the <head>
element of a HTML document

	/html/head/title/text(): selects the text inside the aforementioned
<title> element.

	//td: selects all the <td> elements

	//div[@class="mine"]: selects all div elements which contain an
attribute class="mine"

These are just a couple of simple examples of what you can do with XPath, but
XPath expressions are indeed much more powerful. To learn more about XPath we
recommend this XPath tutorial [http://www.w3schools.com/XPath/default.asp].

For working with XPaths, Scrapy provides a XPathSelector
class, which comes in two flavours, HtmlXPathSelector
(for HTML data) and XmlXPathSelector (for XML data). In
order to use them you must instantiate the desired class with a
Response object.

You can see selectors as objects that represent nodes in the document
structure. So, the first instantiated selectors are associated to the root
node, or the entire document.

Selectors have three methods (click on the method to see the complete API
documentation).

	select(): returns a list of selectors, each of
them representing the nodes selected by the xpath expression given as
argument.

	
	extract(): returns a unicode string with

	the data selected by the XPath selector.

	re(): returns a list of unicode strings
extracted by applying the regular expression given as argument.

Trying Selectors in the Shell

To illustrate the use of Selectors we’re going to use the built-in Scrapy
shell, which also requires IPython (an extended Python console)
installed on your system.

To start a shell, you must go to the project’s top level directory and run:

scrapy shell http://www.dmoz.org/Computers/Programming/Languages/Python/Books/

This is what the shell looks like:

[... Scrapy log here ...]

[s] Available Scrapy objects:
[s] 2010-08-19 21:45:59-0300 [default] INFO: Spider closed (finished)
[s] hxs <HtmlXPathSelector (http://www.dmoz.org/Computers/Programming/Languages/Python/Books/) xpath=None>
[s] item Item()
[s] request <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s] response <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s] spider <BaseSpider 'default' at 0x1b6c2d0>
[s] xxs <XmlXPathSelector (http://www.dmoz.org/Computers/Programming/Languages/Python/Books/) xpath=None>
[s] Useful shortcuts:
[s] shelp() Print this help
[s] fetch(req_or_url) Fetch a new request or URL and update shell objects
[s] view(response) View response in a browser

In [1]:

After the shell loads, you will have the response fetched in a local
response variable, so if you type response.body you will see the body
of the response, or you can type response.headers to see its headers.

The shell also instantiates two selectors, one for HTML (in the hxs
variable) and one for XML (in the xxs variable) with this response. So let’s
try them:

In [1]: hxs.select('/html/head/title')
Out[1]: [<HtmlXPathSelector (title) xpath=/html/head/title>]

In [2]: hxs.select('/html/head/title').extract()
Out[2]: [u'<title>Open Directory - Computers: Programming: Languages: Python: Books</title>']

In [3]: hxs.select('/html/head/title/text()')
Out[3]: [<HtmlXPathSelector (text) xpath=/html/head/title/text()>]

In [4]: hxs.select('/html/head/title/text()').extract()
Out[4]: [u'Open Directory - Computers: Programming: Languages: Python: Books']

In [5]: hxs.select('/html/head/title/text()').re('(\w+):')
Out[5]: [u'Computers', u'Programming', u'Languages', u'Python']

Extracting the data

Now, let’s try to extract some real information from those pages.

You could type response.body in the console, and inspect the source code to
figure out the XPaths you need to use. However, inspecting the raw HTML code
there could become a very tedious task. To make this an easier task, you can
use some Firefox extensions like Firebug. For more information see
Using Firebug for scraping and Using Firefox for scraping.

After inspecting the page source, you’ll find that the web sites information
is inside a element, in fact the second element.

So we can select each element belonging to the sites list with this
code:

hxs.select('//ul/li')

And from them, the sites descriptions:

hxs.select('//ul/li/text()').extract()

The sites titles:

hxs.select('//ul/li/a/text()').extract()

And the sites links:

hxs.select('//ul/li/a/@href').extract()

As we said before, each select() call returns a list of selectors, so we can
concatenate further select() calls to dig deeper into a node. We are going to use
that property here, so:

sites = hxs.select('//ul/li')
for site in sites:
 title = site.select('a/text()').extract()
 link = site.select('a/@href').extract()
 desc = site.select('text()').extract()
 print title, link, desc

Note

For a more detailed description of using nested selectors, see
Nesting selectors and
Working with relative XPaths in the XPath Selectors
documentation

Let’s add this code to our spider:

from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector

class DmozSpider(BaseSpider):
 name = "dmoz.org"
 allowed_domains = ["dmoz.org"]
 start_urls = [
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
]

 def parse(self, response):
 hxs = HtmlXPathSelector(response)
 sites = hxs.select('//ul/li')
 for site in sites:
 title = site.select('a/text()').extract()
 link = site.select('a/@href').extract()
 desc = site.select('text()').extract()
 print title, link, desc

Now try crawling the dmoz.org domain again and you’ll see sites being printed
in your output, run:

scrapy crawl dmoz.org

Using our item

Item objects are custom python dicts; you can access the
values of their fields (attributes of the class we defined earlier) using the
standard dict syntax like:

>>> item = DmozItem()
>>> item['title'] = 'Example title'
>>> item['title']
'Example title'

Spiders are expected to return their scraped data inside
Item objects, so to actually return the data we’ve
scraped so far, the code for our Spider should be like this:

from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector

from dmoz.items import DmozItem

class DmozSpider(BaseSpider):
 name = "dmoz.org"
 allowed_domains = ["dmoz.org"]
 start_urls = [
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
]

 def parse(self, response):
 hxs = HtmlXPathSelector(response)
 sites = hxs.select('//ul/li')
 items = []
 for site in sites:
 item = DmozItem()
 item['title'] = site.select('a/text()').extract()
 item['link'] = site.select('a/@href').extract()
 item['desc'] = site.select('text()').extract()
 items.append(item)
 return items

Now doing a crawl on the dmoz.org domain yields DmozItem‘s:

[dmoz.org] DEBUG: Scraped DmozItem(desc=[u' - By David Mertz; Addison Wesley. Book in progress, full text, ASCII format. Asks for feedback. [author website, Gnosis Software, Inc.]\n'], link=[u'http://gnosis.cx/TPiP/'], title=[u'Text Processing in Python']) in <http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[dmoz.org] DEBUG: Scraped DmozItem(desc=[u' - By Sean McGrath; Prentice Hall PTR, 2000, ISBN 0130211192, has CD-ROM. Methods to build XML applications fast, Python tutorial, DOM and SAX, new Pyxie open source XML processing library. [Prentice Hall PTR]\n'], link=[u'http://www.informit.com/store/product.aspx?isbn=0130211192'], title=[u'XML Processing with Python']) in <http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>

Storing the scraped data

The simplest way to store the scraped data is by using the Feed exports, with the following command:

scrapy crawl dmoz.org --set FEED_URI=items.json --set FEED_FORMAT=json

That will generate a items.json file containing all scraped items,
serialized in JSON [http://en.wikipedia.org/wiki/JSON].

In small projects (like the one in this tutorial), that should be enough.
However, if you want to perform more complex things with the scraped items, you
can write an Item Pipeline. As with Items, a
placeholder file for Item Pipelines has been set up for you when the project is
created, in dmoz/pipelines.py. Though you don’t need to implement any item
pipeline if you just want to store the scraped items.

Finale

This tutorial covers only the basics of Scrapy, but there’s a lot of other
features not mentioned here. We recommend you continue reading the section
Scrapy 0.12 documentation.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Command line tool

New in version 0.10.

Scrapy is controlled through the scrapy command-line tool, to be referred
here as the “Scrapy tool” to differentiate it from their sub-commands which we
just call “commands”, or “Scrapy commands”.

The Scrapy tool provides several commands, for multiple purposes, and each one
accepts a different set of arguments and options.

Default structure of Scrapy projects

Before delving into the command-line tool and its sub-commands, let’s first
understand the directory structure of a Scrapy project.

Even thought it can be modified, all Scrapy projects have the same file
structure by default, similar to this:

scrapy.cfg
myproject/
 __init__.py
 items.py
 pipelines.py
 settings.py
 spiders/
 __init__.py
 spider1.py
 spider2.py
 ...
.scrapy/
 scrapy.db

The directory where the scrapy.cfg file resides is known as the project
root directory. That file contains the name of the python module that defines
the project settings. Here is an example:

[settings]
default = myproject.settings

By default, Scrapy projects use a SQLite [http://en.wikipedia.org/wiki/SQLite] database to store persistent runtime
data of the project, such as the spider queue (the list of spiders that are
scheduled to run). By default, this SQLite database is stored in the project
data directory which, by default, is the .scrapy directory inside the
project root directory mentioned above.

Using the scrapy tool

You can start by running the Scrapy tool with no arguments and it will print
some usage help and the available commands:

Scrapy X.Y - no active project

Usage:
 scrapy <command> [options] [args]

Available commands:
 crawl Start crawling a spider or URL
 fetch Fetch a URL using the Scrapy downloader
[...]

The first line will print the currently active project, if you’re inside a
Scrapy project. In this, it was run from outside a project. If run from inside
a project it would have printed something like this:

Scrapy X.Y - project: myproject

Usage:
 scrapy <command> [options] [args]

[...]

Creating projects

The first thing you typically do with the scrapy tool is create your Scrapy
project:

scrapy startproject myproject

That will create a Scrapy project under the myproject directory.

Next, you go inside the new project directory:

cd myproject

And you’re ready to use use the scrapy command to manage and control your
project from there.

Controlling projects

You use the scrapy tool from inside your projects to control and manage
them.

For example, to create a new spider:

scrapy genspider mydomain mydomain.com

Some Scrapy commands (like crawl) must be run from inside a Scrapy
project. See the commands reference below for more
information on which commands must be run from inside projects, and which not.

Also keep in mind that some commands may have slightly different behaviours
when running them from inside projects. For example, the fetch command will use
spider-overridden behaviours (such as custom USER_AGENT per-spider
setting) if the url being fetched is associated with some specific spider. This
is intentional, as the fetch command is meant to be used to check how
spiders are downloading pages.

Available tool commands

This section contains a list of the available built-in commands with a
description and some usage examples. Remember you can always get more info
about each command by running:

scrapy <command> -h

And you can see all available commands with:

scrapy -h

There are two kinds of commands, those that only work from inside a Scrapy
project (Project-specific commands) and those that also work without an active
Scrapy project (Global commands), though they may behave slightly different
when running from inside a project (as they would use the project overriden
settings).

Global commands:

	startproject

	settings

	runspider

	shell

	fetch

	view

	version

Project-only commands:

	crawl

	list

	parse

	genspider

	server

	deploy

startproject

	Syntax: scrapy startproject <project_name>

	Requires project: no

Creates a new Scrapy project named project_name, under the project_name
directory.

Usage example:

$ scrapy startproject myproject

genspider

	Syntax: scrapy genspider [-t template] <name> <domain>

	Requires project: yes

Create a new spider in the current project.

This is just a convenient shortcut command for creating spiders based on
pre-defined templates, but certainly not the only way to create spiders. You
can just create the spider source code files yourself, instead of using this
command.

Usage example:

$ scrapy genspider -l
Available templates:
 basic
 crawl
 csvfeed
 xmlfeed

$ scrapy genspider -d basic
from scrapy.spider import BaseSpider

class $classname(BaseSpider):
 name = "$name"
 allowed_domains = ["$domain"]
 start_urls = (
 'http://www.$domain/',
)

 def parse(self, response):
 pass

$ scrapy genspider -t basic example example.com
Created spider 'example' using template 'basic' in module:
 mybot.spiders.example

crawl

	Syntax: scrapy crawl <spider|url>

	Requires project: yes

Start crawling a spider. If a URL is passed instead of a spider, it will start
from that URL instead of the spider start urls.

Usage examples:

$ scrapy crawl example.com
[... example.com spider starts crawling ...]

$ scrapy crawl myspider
[... myspider starts crawling ...]

$ scrapy crawl http://example.com/some/page.html
[... spider that handles example.com starts crawling from that url ...]

server

	Syntax: scrapy server

	Requires project: yes

Start Scrapyd server for this project, which can be referred from the JSON API
with the project name default. For more info see: Scrapy Service (scrapyd).

Usage example:

$ scrapy server
[... scrapyd starts and stays idle waiting for spiders to get scheduled ...]

To schedule spiders, use the Scrapyd JSON API.

list

	Syntax: scrapy list

	Requires project: yes

List all available spiders in the current project. The output is one spider per
line.

Usage example:

$ scrapy list
spider1
spider2

fetch

	Syntax: scrapy fetch <url>

	Requires project: no

Downloads the given URL using the Scrapy downloader and writes the contents to
standard output.

The interesting thing about this command is that it fetches the page how the
the spider would download it. For example, if the spider has an USER_AGENT
attribute which overrides the User Agent, it will use that one.

So this command can be used to “see” how your spider would fetch certain page.

If used outside a project, no particular per-spider behaviour would be applied
and it will just use the default Scrapy downloder settings.

Usage examples:

$ scrapy fetch --nolog http://www.example.com/some/page.html
[... html content here ...]

$ scrapy fetch --nolog --headers http://www.example.com/
{'Accept-Ranges': ['bytes'],
 'Age': ['1263 '],
 'Connection': ['close '],
 'Content-Length': ['596'],
 'Content-Type': ['text/html; charset=UTF-8'],
 'Date': ['Wed, 18 Aug 2010 23:59:46 GMT'],
 'Etag': ['"573c1-254-48c9c87349680"'],
 'Last-Modified': ['Fri, 30 Jul 2010 15:30:18 GMT'],
 'Server': ['Apache/2.2.3 (CentOS)']}

view

	Syntax: scrapy view <url>

	Requires project: no

Opens the given URL in a browser, as your Scrapy spider would “see” it.
Sometimes spiders see pages differently from regular users, so this can be used
to check what the spider “sees” and confirm it’s what you expect.

Usage example:

$ scrapy view http://www.example.com/some/page.html
[... browser starts ...]

shell

	Syntax: scrapy shell [url]

	Requires project: no

Starts the Scrapy shell for the given URL (if given) or empty if not URL is
given. See Scrapy shell for more info.

Usage example:

$ scrapy shell http://www.example.com/some/page.html
[... scrapy shell starts ...]

parse

	Syntax: scrapy parse <url> [options]

	Requires project: yes

Fetches the given URL and parses with the spider that handles it, using the
method passed with the --callback option, or parse if not given.

Supported options:

	--callback or -c: spider method to use as callback for parsing the
response

	--rules or -r: use CrawlSpider
rules to discover the callback (ie. spider method) to use for parsing the
response

	--noitems: don’t show extracted links

	--nolinks: don’t show scraped items

Usage example:

$ scrapy parse http://www.example.com/ -c parse_item
[... scrapy log lines crawling example.com spider ...]
Scraped Items - callback: parse --
MyItem({'name': u"Example item",
 'category': u'Furniture',
 'length': u'12 cm'}
)

settings

	Syntax: scrapy settings [options]

	Requires project: no

Get the value of a Scrapy setting.

If used inside a project it’ll show the project setting value, otherwise it’ll
show the default Scrapy value for that setting.

Example usage:

$ scrapy settings --get BOT_NAME
scrapybot
$ scrapy settings --get DOWNLOAD_DELAY
0

runspider

	Syntax: scrapy runspider <spider_file.py>

	Requires project: no

Run a spider self-contained in a Python file, without having to create a
project.

Example usage:

$ scrapy runspider myspider.py
[... spider starts crawling ...]

version

	Syntax: scrapy version [-v]

	Requires project: no

Prints the Scrapy version. If used with -v it also prints Python, Twisted
and Platform info, which is useful for bug reports.

deploy

New in version 0.11.

	Syntax: scrapy deploy [<target:project> | -l <target> | -L]

	Requires project: yes

Deploy the project into a Scrapyd server. See Deploying your project.

Custom project commands

You can also add your custom project commands by using the
COMMANDS_MODULE setting. See the Scrapy commands in
scrapy/commands [http://dev.scrapy.org/browser/scrapy/commands] for examples on how to implement your commands.

COMMANDS_MODULE

Default: '' (empty string)

A module to use for looking custom Scrapy commands. This is used to add custom
commands for your Scrapy project.

Example:

COMMANDS_MODULE = 'mybot.commands'

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Items

The main goal in scraping is to extract structured data from unstructured
sources, typically, web pages. Scrapy provides the Item class for this
purpose.

Item objects are simple containers used to collect the scraped data.
They provide a dictionary-like [http://docs.python.org/library/stdtypes.html#dict] API with a convenient syntax for declaring
their available fields.

Declaring Items

Items are declared using a simple class definition syntax and Field
objects. Here is an example:

from scrapy.item import Item, Field

class Product(Item):
 name = Field()
 price = Field()
 stock = Field(default=0)
 last_updated = Field()

Note

Those familiar with Django [http://www.djangoproject.com/] will notice that Scrapy Items are
declared similar to Django Models [http://docs.djangoproject.com/en/dev/topics/db/models/], except that Scrapy Items are much
simpler as there is no concept of different field types.

Item Fields

Field objects are used to specify metadata for each field. For
example, the default value for the stock field illustrated in the example
above.

You can specify any kind of metadata for each field. There is no restriction on
the values accepted by Field objects. For this same
reason, there isn’t a reference list of all available metadata keys. Each key
defined in Field objects could be used by a different components, and
only those components know about it. You can also define and use any other
Field key in your project too, for your own needs. The main goal of
Field objects is to provide a way to define all field metadata in one
place. Typically, those components whose behaviour depends on each field use
certain field keys to configure that behaviour. You must refer to their
documentation to see which metadata keys are used by each component.

It’s important to note that the Field objects used to declare the item
do not stay assigned as class attributes. Instead, they can be accesed through
the Item.fields attribute.

And that’s all you need to know about declaring items.

Working with Items

Here are some examples of common tasks performed with items, using the
Product item declared above. You will
notice the API is very similar to the dict API [http://docs.python.org/library/stdtypes.html#dict].

Creating items

>>> product = Product(name='Desktop PC', price=1000)
>>> print product
Product(name='Desktop PC', price=1000)

Getting field values

>>> product['name']
Desktop PC
>>> product.get('name')
Desktop PC

>>> product['price']
1000

>>> product['stock'] # getting field with default value
0

>>> product['last_updated'] # getting field with no default value
Traceback (most recent call last):
 ...
KeyError: 'last_updated'

>>> product.get('last_updated', 'not set')
not set

>>> product['lala'] # getting unknown field
Traceback (most recent call last):
 ...
KeyError: 'lala'

>>> product.get('lala', 'unknown field')
'unknown field'

>>> 'name' in product # is name field populated?
True

>>> 'last_updated' in product # is last_updated populated?
False

>>> 'last_updated' in product.fields # is last_updated a declared field?
True

>>> 'lala' in product.fields # is lala a declared field?
False

Setting field values

>>> product['last_updated'] = 'today'
>>> product['last_updated']
today

>>> product['lala'] = 'test' # setting unknown field
Traceback (most recent call last):
 ...
KeyError: 'Product does not support field: lala'

Accesing all populated values

To access all populated values, just use the typical dict API [http://docs.python.org/library/stdtypes.html#dict]:

>>> product.keys()
['price', 'name']

>>> product.items()
[('price', 1000), ('name', 'Desktop PC')]

Other common tasks

Copying items:

>>> product2 = Product(product)
>>> print product2
Product(name='Desktop PC', price=1000)

Creating dicts from items:

>>> dict(product) # create a dict from all populated values
{'price': 1000, 'name': 'Desktop PC'}

Creating items from dicts:

>>> Product({'name': 'Laptop PC', 'price': 1500})
Product(price=1500, name='Laptop PC')

>>> Product({'name': 'Laptop PC', 'lala': 1500}) # warning: unknown field in dict
Traceback (most recent call last):
 ...
KeyError: 'Product does not support field: lala'

Default values

The only field metadata key supported by Items themselves is default, which
specifies the default value to return when trying to access a field which
wasn’t populated before.

So, for the Product item declared above:

>>> product = Product()

>>> product['stock'] # field with default value
0

>>> product['name'] # field with no default value
Traceback (most recent call last):
...
KeyError: 'name'

>>> product.get('name') is None
True

Extending Items

You can extend Items (to add more fields or to change some metadata for some
fields) by declaring a subclass of your original Item.

For example:

class DiscountedProduct(Product):
 discount_percent = Field(default=0)
 discount_expiration_date = Field()

You can also extend field metadata by using the previous field metadata and
appending more values, or changing existing values, like this:

class SpecificProduct(Product):
 name = Field(Product.fields['name'], default='product')

That adds (or replaces) the default metadata key for the name field,
keeping all the previously existing metadata values.

Item objects

	
class scrapy.item.Item([arg])

	Return a new Item optionally initialized from the given argument.

Items replicate the standard dict API [http://docs.python.org/library/stdtypes.html#dict], including its constructor. The
only additional attribute provided by Items is:

	
fields

	A dictionary containing all declared fields for this Item, not only
those populated. The keys are the field names and the values are the
Field objects used in the Item declaration.

Field objects

	
class scrapy.item.Field([arg])

	The Field class is just an alias to the built-in dict [http://docs.python.org/library/stdtypes.html#dict] class and
doesn’t provide any extra functionality or attributes. In other words,
Field objects are plain-old Python dicts. A separate class is used
to support the item declaration syntax
based on class attributes.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Spiders

Spiders are classes which define how a certain site (or domain) will be
scraped, including how to crawl the site and how to extract scraped items from
their pages. In other words, Spiders are the place where you define the custom
behaviour for crawling and parsing pages for a particular site.

For spiders, the scraping cycle goes through something like this:

	You start by generating the initial Requests to crawl the first URLs, and
specify a callback function to be called with the response downloaded from
those requests.

The first requests to perform are obtained by calling the
start_requests() method which (by default)
generates Request for the URLs specified in the
start_urls and the
parse method as callback function for the
Requests.

	In the callback function, you parse the response (web page) and return either
Item objects, Request objects,
or an iterable of both. Those Requests will also contain a callback (maybe
the same) and will then be downloaded by Scrapy and then their
response handled by the specified callback.

	In callback functions, you parse the page contents, typically using
XPath Selectors (but you can also use BeautifuSoup, lxml or whatever
mechanism you prefer) and generate items with the parsed data.

	Finally, the items returned from the spider will be typically persisted in
some Item pipeline.

Even though this cycle applies (more or less) to any kind of spider, there are
different kinds of default spiders bundled into Scrapy for different purposes.
We will talk about those types here.

Built-in spiders reference

For the examples used in the following spiders reference, we’ll assume we have a
TestItem declared in a myproject.items module, in your project:

from scrapy.item import Item

class TestItem(Item):
 id = Field()
 name = Field()
 description = Field()

BaseSpider

	
class scrapy.spider.BaseSpider

	This is the simplest spider, and the one from which every other spider
must inherit from (either the ones that come bundled with Scrapy, or the ones
that you write yourself). It doesn’t provide any special functionality. It just
requests the given start_urls/start_requests, and calls the spider’s
method parse for each of the resulting responses.

	
name

	A string which defines the name for this spider. The spider name is how
the spider is located (and instantiated) by Scrapy, so it must be
unique. However, nothing prevents you from instantiating more than one
instance of the same spider. This is the most important spider attribute
and it’s required.

Is recommended to name your spiders after the domain that their crawl.

	
allowed_domains

	An optional list of strings containing domains that this spider is
allowed to crawl. Requests for URLs not belonging to the domain names
specified in this list won’t be followed if
OffsiteMiddleware is enabled.

	
start_urls

	A list of URLs where the spider will begin to crawl from, when no
particular URLs are specified. So, the first pages downloaded will be those
listed here. The subsequent URLs will be generated successively from data
contained in the start URLs.

	
start_requests()

	This method must return an iterable with the first Requests to crawl for
this spider.

This is the method called by Scrapy when the spider is opened for
scraping when no particular URLs are specified. If particular URLs are
specified, the make_requests_from_url() is used instead to create
the Requests. This method is also called only once from Scrapy, so it’s
safe to implement it as a generator.

The default implementation uses make_requests_from_url() to
generate Requests for each url in start_urls.

If you want to change the Requests used to start scraping a domain, this is
the method to override. For example, if you need to start by logging in using
a POST request, you could do:

def start_requests(self):
 return [FormRequest("http://www.example.com/login",
 formdata={'user': 'john', 'pass': 'secret'},
 callback=self.logged_in)]

def logged_in(self, response):
 # here you would extract links to follow and return Requests for
 # each of them, with another callback
 pass

	
make_requests_from_url(url)

	A method that receives a URL and returns a Request
object (or a list of Request objects) to scrape. This
method is used to construct the initial requests in the
start_requests() method, and is typically used to convert urls to
requests.

Unless overridden, this method returns Requests with the parse()
method as their callback function, and with dont_filter parameter enabled
(see Request class for more info).

	
parse(response)

	This is the default callback used by Scrapy to process downloaded
responses, when their requests don’t specify a callback.

The parse method is in charge of processing the response and returning
scraped data and/or more URLs to follow. Other Requests callbacks have
the same requirements as the BaseSpider class.

This method, as well as any other Request callback, must return an
iterable of Item objects.

	Parameters:	response – the response to parse

	
log(message[, level, component])

	Log a message using the scrapy.log.msg() function, automatically
populating the spider argument with the name of this
spider. For more information see Logging.

BaseSpider example

Let’s see an example:

from scrapy import log # This module is useful for printing out debug information
from scrapy.spider import BaseSpider

class MySpider(BaseSpider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = [
 'http://www.example.com/1.html',
 'http://www.example.com/2.html',
 'http://www.example.com/3.html',
]

 def parse(self, response):
 self.log('A response from %s just arrived!' % response.url)

Another example returning multiples Requests and Items from a single callback:

from scrapy.selector import HtmlXPathSelector
from scrapy.spider import BaseSpider
from scrapy.http import Request
from myproject.items import MyItem

class MySpider(BaseSpider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = [
 'http://www.example.com/1.html',
 'http://www.example.com/2.html',
 'http://www.example.com/3.html',
]

 def parse(self, response):
 hxs = HtmlXPathSelector(response)
 for h3 in hxs.select('//h3').extract():
 yield MyItem(title=h3)

 for url in hxs.select('//a/@href').extract():
 yield Request(url, callback=self.parse)

CrawlSpider

	
class scrapy.contrib.spiders.CrawlSpider

	This is the most commonly used spider for crawling regular websites, as it
provides a convenient mechanism for following links by defining a set of rules.
It may not be the best suited for your particular web sites or project, but
it’s generic enough for several cases, so you can start from it and override it
as needed for more custom functionality, or just implement your own spider.

Apart from the attributes inherited from BaseSpider (that you must
specify), this class supports a new attribute:

	
rules

	Which is a list of one (or more) Rule objects. Each Rule
defines a certain behaviour for crawling the site. Rules objects are
described below. If multiple rules match the same link, the first one
will be used, according to the order they’re defined in this attribute.

Crawling rules

	
class scrapy.contrib.spiders.Rule(link_extractor, callback=None, cb_kwargs=None, follow=None, process_links=None, process_request=None)

	link_extractor is a Link Extractor object which
defines how links will be extracted from each crawled page.

callback is a callable or a string (in which case a method from the spider
object with that name will be used) to be called for each link extracted with
the specified link_extractor. This callback receives a response as its first
argument and must return a list containing Item and/or
Request objects (or any subclass of them).

Warning

When writing crawl spider rules, avoid using parse as
callback, since the CrawlSpider uses the parse method
itself to implement its logic. So if you override the parse method,
the crawl spider will no longer work.

cb_kwargs is a dict containing the keyword arguments to be passed to the
callback function

follow is a boolean which specifies if links should be followed from each
response extracted with this rule. If callback is None follow defaults
to True, otherwise it default to False.

process_links is a callable, or a string (in which case a method from the
spider object with that name will be used) which will be called for each list
of links extracted from each response using the specified link_extractor.
This is mainly used for filtering purposes.

process_request is a callable, or a string (in which case a method from
the spider object with that name will be used) which will be called with
every request extracted by this rule, and must return a request or None (to
filter out the request).

CrawlSpider example

Let’s now take a look at an example CrawlSpider with rules:

from scrapy.contrib.spiders import CrawlSpider, Rule
from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
from scrapy.selector import HtmlXPathSelector
from scrapy.item import Item

class MySpider(CrawlSpider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = ['http://www.example.com']

 rules = (
 # Extract links matching 'category.php' (but not matching 'subsection.php')
 # and follow links from them (since no callback means follow=True by default).
 Rule(SgmlLinkExtractor(allow=('category\.php',), deny=('subsection\.php',))),

 # Extract links matching 'item.php' and parse them with the spider's method parse_item
 Rule(SgmlLinkExtractor(allow=('item\.php',)), callback='parse_item'),
)

 def parse_item(self, response):
 self.log('Hi, this is an item page! %s' % response.url)

 hxs = HtmlXPathSelector(response)
 item = Item()
 item['id'] = hxs.select('//td[@id="item_id"]/text()').re(r'ID: (\d+)')
 item['name'] = hxs.select('//td[@id="item_name"]/text()').extract()
 item['description'] = hxs.select('//td[@id="item_description"]/text()').extract()
 return item

This spider would start crawling example.com’s home page, collecting category
links, and item links, parsing the latter with the parse_item method. For
each item response, some data will be extracted from the HTML using XPath, and
a Item will be filled with it.

XMLFeedSpider

	
class scrapy.contrib.spiders.XMLFeedSpider

	XMLFeedSpider is designed for parsing XML feeds by iterating through them by a
certain node name. The iterator can be chosen from: iternodes, xml,
and html. It’s recommended to use the iternodes iterator for
performance reasons, since the xml and html iterators generate the
whole DOM at once in order to parse it. However, using html as the
iterator may be useful when parsing XML with bad markup.

To set the iterator and the tag name, you must define the following class
attributes:

	
iterator

	A string which defines the iterator to use. It can be either:

	'iternodes' - a fast iterator based on regular expressions

	'html' - an iterator which uses HtmlXPathSelector. Keep in mind
this uses DOM parsing and must load all DOM in memory which could be a
problem for big feeds

	'xml' - an iterator which uses XmlXPathSelector. Keep in mind
this uses DOM parsing and must load all DOM in memory which could be a
problem for big feeds

It defaults to: 'iternodes'.

	
itertag

	A string with the name of the node (or element) to iterate in. Example:

itertag = 'product'

	
namespaces

	A list of (prefix, uri) tuples which define the namespaces
available in that document that will be processed with this spider. The
prefix and uri will be used to automatically register
namespaces using the
register_namespace() method.

You can then specify nodes with namespaces in the itertag
attribute.

Example:

class YourSpider(XMLFeedSpider):

 namespaces = [('n', 'http://www.sitemaps.org/schemas/sitemap/0.9')]
 itertag = 'n:url'
 # ...

Apart from these new attributes, this spider has the following overrideable
methods too:

	
adapt_response(response)

	A method that receives the response as soon as it arrives from the spider
middleware, before the spider starts parsing it. It can be used to modify
the response body before parsing it. This method receives a response and
also returns a response (it could be the same or another one).

	
parse_node(response, selector)

	This method is called for the nodes matching the provided tag name
(itertag). Receives the response and an XPathSelector for each node.
Overriding this method is mandatory. Otherwise, you spider won’t work.
This method must return either a Item object, a
Request object, or an iterable containing any of
them.

	
process_results(response, results)

	This method is called for each result (item or request) returned by the
spider, and it’s intended to perform any last time processing required
before returning the results to the framework core, for example setting the
item IDs. It receives a list of results and the response which originated
those results. It must return a list of results (Items or Requests).

XMLFeedSpider example

These spiders are pretty easy to use, let’s have a look at one example:

from scrapy import log
from scrapy.contrib.spiders import XMLFeedSpider
from myproject.items import TestItem

class MySpider(XMLFeedSpider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = ['http://www.example.com/feed.xml']
 iterator = 'iternodes' # This is actually unnecesary, since it's the default value
 itertag = 'item'

 def parse_node(self, response, node):
 log.msg('Hi, this is a <%s> node!: %s' % (self.itertag, ''.join(node.extract())))

 item = Item()
 item['id'] = node.select('@id').extract()
 item['name'] = node.select('name').extract()
 item['description'] = node.select('description').extract()
 return item

Basically what we did up there was to create a spider that downloads a feed from
the given start_urls, and then iterates through each of its item tags,
prints them out, and stores some random data in an Item.

CSVFeedSpider

	
class scrapy.contrib.spiders.CSVFeedSpider

	This spider is very similar to the XMLFeedSpider, except that it iterates
over rows, instead of nodes. The method that gets called in each iteration
is parse_row().

	
delimiter

	A string with the separator character for each field in the CSV file
Defaults to ',' (comma).

	
headers

	A list of the rows contained in the file CSV feed which will be used to
extract fields from it.

	
parse_row(response, row)

	Receives a response and a dict (representing each row) with a key for each
provided (or detected) header of the CSV file. This spider also gives the
opportunity to override adapt_response and process_results methods
for pre- and post-processing purposes.

CSVFeedSpider example

Let’s see an example similar to the previous one, but using a
CSVFeedSpider:

from scrapy import log
from scrapy.contrib.spiders import CSVFeedSpider
from myproject.items import TestItem

class MySpider(CSVFeedSpider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = ['http://www.example.com/feed.csv']
 delimiter = ';'
 headers = ['id', 'name', 'description']

 def parse_row(self, response, row):
 log.msg('Hi, this is a row!: %r' % row)

 item = TestItem()
 item['id'] = row['id']
 item['name'] = row['name']
 item['description'] = row['description']
 return item

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Link Extractors

LinkExtractors are objects whose only purpose is to extract links from web
pages (scrapy.http.Response objects) which will be eventually
followed.

There are two Link Extractors available in Scrapy by default, but you create
your own custom Link Extractors to suit your needs by implementing a simple
interface.

The only public method that every LinkExtractor has is extract_links,
which receives a Response object and returns a list
of links. Link Extractors are meant to be instantiated once and their
extract_links method called several times with different responses, to
extract links to follow.

Link extractors are used in the CrawlSpider
class (available in Scrapy), through a set of rules, but you can also use it in
your spiders, even if you don’t subclass from
CrawlSpider, as its purpose is very simple: to
extract links.

Built-in link extractors reference

All available link extractors classes bundled with Scrapy are provided in the
scrapy.contrib.linkextractors module.

SgmlLinkExtractor

	
class scrapy.contrib.linkextractors.sgml.SgmlLinkExtractor(allow=(), deny=(), allow_domains=(), deny_domains=(), restrict_xpaths(), tags=('a', 'area'), attrs=('href'), canonicalize=True, unique=True, process_value=None)

	The SgmlLinkExtractor extends the base BaseSgmlLinkExtractor by
providing additional filters that you can specify to extract links,
including regular expressions patterns that the links must match to be
extracted. All those filters are configured through these constructor
parameters:

	Parameters:	
	allow (str or list) – a single regular expression (or list of regular expressions)
that the (absolute) urls must match in order to be extracted. If not
given (or empty), it will match all links.

	deny – a single regular expression (or list of regular expressions)
that the (absolute) urls must match in order to be excluded (ie. not
extracted). It has precedence over the allow parameter. If not
given (or empty) it won’t exclude any links.

	allow_domains – a single value or a list of string containing
domains which will be considered for extracting the links

	deny_domains – a single value or a list of strings containing
domains which won’t be considered for extracting the links

	restrict_xpaths (str or list) – is a XPath (or list of XPath’s) which defines
regions inside the response where links should be extracted from.
If given, only the text selected by those XPath will be scanned for
links. See examples below.

	tags (str or list) – a tag or a list of tags to consider when extracting links.
Defaults to ('a', 'area').

	attrs (boolean) – list of attrbitues which should be considered when looking
for links to extract (only for those tags specified in the tags
parameter). Defaults to ('href',)

	canonicalize (boolean) – canonicalize each extracted url (using
scrapy.utils.url.canonicalize_url). Defaults to True.

	unique (boolean) – whether duplicate filtering should be applied to extracted
links.

	process_value (callable) – see process_value argument of
BaseSgmlLinkExtractor class constructor

BaseSgmlLinkExtractor

	
class scrapy.contrib.linkextractors.sgml.BaseSgmlLinkExtractor(tag="a", attr="href", unique=False, process_value=None)

	The purpose of this Link Extractor is only to serve as a base class for the
SgmlLinkExtractor. You should use that one instead.

The constructor arguments are:

	Parameters:	
	tag (str or callable) – either a string (with the name of a tag) or a function that
receives a tag name and returns True if links should be extracted from
that tag, or False if they shouldn’t. Defaults to 'a'. request
(once it’s downloaded) as its first parameter. For more information, see
Passing arguments to callback functions.

	attr (str or callable) – either string (with the name of a tag attribute), or a
function that receives an attribute name and returns True if
links should be extracted from it, or False if they shouldn’t.
Defaults to href.

	unique (boolean) – is a boolean that specifies if a duplicate filtering should
be applied to links extracted.

	process_value (callable) – a function which receives each value extracted from
the tag and attributes scanned and can modify the value and return a
new one, or return None to ignore the link altogether. If not
given, process_value defaults to lambda x: x.

For example, to extract links from this code:

Link text

You can use the following function in process_value:

def process_value(value):
 m = re.search("javascript:goToPage\('(.*?)'", value)
 if m:
 return m.group(1)

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

XPath Selectors

When you’re scraping web pages, the most common task you need to perform is
to extract data from the HTML source. There are several libraries available to
achieve this:

	BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/] is a very popular screen scraping library among Python
programmers which constructs a Python object based on the
structure of the HTML code and also deals with bad markup reasonably well,
but it has one drawback: it’s slow.

	lxml [http://codespeak.net/lxml/] is a XML parsing library (which also parses HTML) with a pythonic
API based on ElementTree [http://docs.python.org/library/xml.etree.elementtree.html] (which is not part of the Python standard
library).

Scrapy comes with its own mechanism for extracting data. They’re called XPath
selectors (or just “selectors”, for short) because they “select” certain parts
of the HTML document specified by XPath [http://www.w3.org/TR/xpath] expressions.

XPath [http://www.w3.org/TR/xpath] is a language for selecting nodes in XML documents, which can also be used with HTML.

Both lxml [http://codespeak.net/lxml/] and Scrapy Selectors are built over the libxml2 [http://xmlsoft.org/] library, which
means they’re very similar in speed and parsing accuracy.

This page explains how selectors work and describes their API which is very
small and simple, unlike the lxml [http://codespeak.net/lxml/] API which is much bigger because the
lxml [http://codespeak.net/lxml/] library can be used for many other tasks, besides selecting markup
documents.

For a complete reference of the selectors API see the XPath selector
reference.

Using selectors

Constructing selectors

There are two types of selectors bundled with Scrapy. Those are:

	HtmlXPathSelector - for working with HTML documents

	XmlXPathSelector - for working with XML documents

Both share the same selector API, and are constructed with a Response object as
their first parameter. This is the Response they’re going to be “selecting”.

Example:

hxs = HtmlXPathSelector(response) # a HTML selector
xxs = XmlXPathSelector(response) # a XML selector

Using selectors with XPaths

To explain how to use the selectors we’ll use the Scrapy shell (which
provides interactive testing) and an example page located in the Scrapy
documentation server:

http://doc.scrapy.org/_static/selectors-sample1.html

Here’s its HTML code:

<html>
 <head>
 <base href='http://example.com/' />
 <title>Example website</title>
 </head>
 <body>
 <div id='images'>
 Name: My image 1

 Name: My image 2

 Name: My image 3

 Name: My image 4

 Name: My image 5

 </div>
 </body>
</html>

First, let’s open the shell:

scrapy shell http://doc.scrapy.org/_static/selectors-sample1.html

Then, after the shell loads, you’ll have some selectors already instantiated and
ready to use.

Since we’re dealing with HTML, we’ll be using the
HtmlXPathSelector object which is found, by default, in
the hxs shell variable.

So, by looking at the HTML code of that page,
let’s construct an XPath (using an HTML selector) for selecting the text inside
the title tag:

>>> hxs.select('//title/text()')
[<HtmlXPathSelector (text) xpath=//title/text()>]

As you can see, the select() method returns an XPathSelectorList, which is a list of
new selectors. This API can be used quickly for extracting nested data.

To actually extract the textual data, you must call the selector extract()
method, as follows:

>>> hxs.select('//title/text()').extract()
[u'Example website']

Now we’re going to get the base URL and some image links:

>>> hxs.select('//base/@href').extract()
[u'http://example.com/']

>>> hxs.select('//a[contains(@href, "image")]/@href').extract()
[u'image1.html',
 u'image2.html',
 u'image3.html',
 u'image4.html',
 u'image5.html']

>>> hxs.select('//a[contains(@href, "image")]/img/@src').extract()
[u'image1_thumb.jpg',
 u'image2_thumb.jpg',
 u'image3_thumb.jpg',
 u'image4_thumb.jpg',
 u'image5_thumb.jpg']

Using selectors with regular expressions

Selectors also have a re() method for extracting data using regular
expressions. However, unlike using the select() method, the re() method
does not return a list of XPathSelector objects, so you
can’t construct nested .re() calls.

Here’s an example used to extract images names from the HTML code above:

>>> hxs.select('//a[contains(@href, "image")]/text()').re(r'Name:\s*(.*)')
[u'My image 1',
 u'My image 2',
 u'My image 3',
 u'My image 4',
 u'My image 5']

Nesting selectors

The select() selector method returns a list of selectors, so you can call the
select() for those selectors too. Here’s an example:

>>> links = hxs.select('//a[contains(@href, "image")]')
>>> links.extract()
[u'Name: My image 1
',
 u'Name: My image 2
',
 u'Name: My image 3
',
 u'Name: My image 4
',
 u'Name: My image 5
']

>>> for index, link in enumerate(links):
 args = (index, link.select('@href').extract(), link.select('img/@src').extract())
 print 'Link number %d points to url %s and image %s' % args

Link number 0 points to url [u'image1.html'] and image [u'image1_thumb.jpg']
Link number 1 points to url [u'image2.html'] and image [u'image2_thumb.jpg']
Link number 2 points to url [u'image3.html'] and image [u'image3_thumb.jpg']
Link number 3 points to url [u'image4.html'] and image [u'image4_thumb.jpg']
Link number 4 points to url [u'image5.html'] and image [u'image5_thumb.jpg']

Working with relative XPaths

Keep in mind that if you are nesting XPathSelectors and use an XPath that
starts with /, that XPath will be absolute to the document and not relative
to the XPathSelector you’re calling it from.

For example, suppose you want to extract all <p> elements inside <div>
elements. First, you would get all <div> elements:

>>> divs = hxs.select('//div')

At first, you may be tempted to use the following approach, which is wrong, as
it actually extracts all <p> elements from the document, not only those
inside <div> elements:

>>> for p in divs.select('//p') # this is wrong - gets all <p> from the whole document
>>> print p.extract()

This is the proper way to do it (note the dot prefixing the .//p XPath):

>>> for p in divs.select('.//p') # extracts all <p> inside
>>> print p.extract()

Another common case would be to extract all direct <p> children:

>>> for p in divs.select('p')
>>> print p.extract()

For more details about relative XPaths see the Location Paths [http://www.w3.org/TR/xpath#location-paths] section in the
XPath specification.

Built-in XPath Selectors reference

There are two types of selectors bundled with Scrapy:
HtmlXPathSelector and XmlXPathSelector. Both of them
implement the same XPathSelector interface. The only different is that
one is used to process HTML data and the other XML data.

XPathSelector objects

	
class scrapy.selector.XPathSelector(response)

	A XPathSelector object is a wrapper over response to select
certain parts of its content.

response is a Response object that will be used
for selecting and extracting data

	
select(xpath)

	Apply the given XPath relative to this XPathSelector and return a list
of XPathSelector objects (ie. a XPathSelectorList) with
the result.

xpath is a string containing the XPath to apply

	
re(regex)

	Apply the given regex and return a list of unicode strings with the
matches.

regex can be either a compiled regular expression or a string which
will be compiled to a regular expression using re.compile(regex)

	
extract()

	Return a unicode string with the content of this XPathSelector
object.

	
register_namespace(prefix, uri)

	Register the given namespace to be used in this XPathSelector.
Without registering namespaces you can’t select or extract data from
non-standard namespaces. See examples below.

	
__nonzero__()

	Returns True if there is any real content selected by this
XPathSelector or False otherwise. In other words, the boolean
value of an XPathSelector is given by the contents it selects.

XPathSelectorList objects

	
class scrapy.selector.XPathSelectorList

	The XPathSelectorList class is subclass of the builtin list
class, which provides a few additional methods.

	
select(xpath)

	Call the XPathSelector.select() method for all XPathSelector
objects in this list and return their results flattened, as a new
XPathSelectorList.

xpath is the same argument as the one in XPathSelector.select()

	
re(regex)

	Call the XPathSelector.re() method for all XPathSelector
objects in this list and return their results flattened, as a list of
unicode strings.

regex is the same argument as the one in XPathSelector.re()

	
extract()

	Call the XPathSelector.extract() method for all XPathSelector
objects in this list and return their results flattened, as a list of
unicode strings.

	
extract_unquoted()

	Call the XPathSelector.extract_unoquoted() method for all
XPathSelector objects in this list and return their results
flattened, as a list of unicode strings. This method should not be applied
to all kinds of XPathSelectors. For more info see
XPathSelector.extract_unoquoted().

HtmlXPathSelector objects

	
class scrapy.selector.HtmlXPathSelector(response)

	A subclass of XPathSelector for working with HTML content. It uses
the libxml2 [http://xmlsoft.org/] HTML parser. See the XPathSelector API for more info.

HtmlXPathSelector examples

Here’s a couple of HtmlXPathSelector examples to illustrate several
concepts. In all cases, we assume there is already an HtmlPathSelector
instantiated with a Response object like this:

x = HtmlXPathSelector(html_response)

	Select all <h1> elements from a HTML response body, returning a list of
XPathSelector objects (ie. a XPathSelectorList object):

x.select("//h1")

	Extract the text of all <h1> elements from a HTML response body,
returning a list of unicode strings:

x.select("//h1").extract() # this includes the h1 tag
x.select("//h1/text()").extract() # this excludes the h1 tag

	Iterate over all <p> tags and print their class attribute:

for node in x.select("//p"):
... print node.select("@href")

	Extract textual data from all <p> tags without entities, as a list of
unicode strings:

x.select("//p/text()").extract_unquoted()

the following line is wrong. extract_unquoted() should only be used
with textual XPathSelectors
x.select("//p").extract_unquoted() # it may work but output is unpredictable

XmlXPathSelector objects

	
class scrapy.selector.XmlXPathSelector(response)

	A subclass of XPathSelector for working with XML content. It uses
the libxml2 [http://xmlsoft.org/] XML parser. See the XPathSelector API for more info.

XmlXPathSelector examples

Here’s a couple of XmlXPathSelector examples to illustrate several
concepts. In all cases we assume there is already a XmlPathSelector
instantiated with a Response object like this:

x = HtmlXPathSelector(xml_response)

	Select all <product> elements from a XML response body, returning a list of
XPathSelector objects (ie. a XPathSelectorList object):

x.select("//h1")

	Extract all prices from a Google Base XML feed [http://base.google.com/support/bin/answer.py?hl=en&answer=59461] which requires registering
a namespace:

x.register_namespace("g", "http://base.google.com/ns/1.0")
x.select("//g:price").extract()

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Item Loaders

Item Loaders provide a convenient mechanism for populating scraped Items. Even though Items can be populated using their own
dictionary-like API, the Item Loaders provide a much more convenient API for
populating them from a scraping process, by automating some common tasks like
parsing the raw extracted data before assigning it.

In other words, Items provide the container of
scraped data, while Item Loaders provide the mechanism for populating that
container.

Item Loaders are designed to provide a flexible, efficient and easy mechanism
for extending and overriding different field parsing rules, either by spider,
or by source format (HTML, XML, etc) without becoming a nightmare to maintain.

Using Item Loaders to populate items

To use an Item Loader, you must first instantiate it. You can either
instantiate it with an dict-like object (e.g. Item or dict) or without one, in
which case an Item is automatically instantiated in the Item Loader constructor
using the Item class specified in the ItemLoader.default_item_class
attribute.

Then, you start collecting values into the Item Loader, typically using
XPath Selectors. You can add more than one value to
the same item field; the Item Loader will know how to “join” those values later
using a proper processing function.

Here is a typical Item Loader usage in a Spider, using
the Product item declared in the Items
chapter:

from scrapy.contrib.loader import XPathItemLoader
from myproject.items import Product

def parse(self, response):
 l = XPathItemLoader(item=Product(), response=response)
 l.add_xpath('name', '//div[@class="product_name"]')
 l.add_xpath('name', '//div[@class="product_title"]')
 l.add_xpath('price', '//p[@id="price"]')
 l.add_xpath('stock', '//p[@id="stock"]')
 l.add_value('last_updated', 'today') # you can also use literal values
 return l.load_item()

By quickly looking at that code, we can see the name field is being
extracted from two different XPath locations in the page:

	//div[@class="product_name"]

	//div[@class="product_title"]

In other words, data is being collected by extracting it from two XPath
locations, using the add_xpath() method. This is the
data that will be assigned to the name field later.

Afterwards, similar calls are used for price and stock fields, and
finally the last_update field is populated directly with a literal value
(today) using a different method: add_value().

Finally, when all data is collected, the ItemLoader.load_item() method is
called which actually populates and returns the item populated with the data
previously extracted and collected with the add_xpath()
and add_value() calls.

Input and Output processors

An Item Loader contains one input processor and one output processor for each
(item) field. The input processor processes the extracted data as soon as it’s
received (through the add_xpath() or
add_value() methods) and the result of the input processor is
collected and kept inside the ItemLoader. After collecting all data, the
ItemLoader.load_item() method is called to populate and get the populated
Item object. That’s when the output processor is
called with the data previously collected (and processed using the input
processor). The result of the output processor is the final value that gets
assigned to the item.

Let’s see an example to illustrate how the input and output processors are
called for a particular field (the same applies for any other field):

l = XPathItemLoader(Product(), some_xpath_selector)
l.add_xpath('name', xpath1) # (1)
l.add_xpath('name', xpath2) # (2)
l.add_value('name', 'test') # (3)
return l.load_item() # (4)

So what happens is:

	Data from xpath1 is extracted, and passed through the input processor of
the name field. The result of the input processor is collected and kept in
the Item Loader (but not yet assigned to the item).

	Data from xpath2 is extracted, and passed through the same input
processor used in (1). The result of the input processor is appended to the
data collected in (1) (if any).

	This case is similar to the previous ones, except that the value to be
collected is assigned directly, instead of being extracted from a XPath.
However, the value is still passed through the input processors. In this
case, since the value is not iterable it is converted to an iterable of a
single element before passing it to the input processor, because input
processor always receive iterables.

	The data collected in (1) and (2) is passed through the output processor of
the name field. The result of the output processor is the value assigned to
the name field in the item.

It’s worth noticing that processors are just callable objects, which are called
with the data to be parsed, and return a parsed value. So you can use any
function as input or output processor. The only requirement is that they must
accept one (and only one) positional argument, which will be an iterator.

Note

Both input and output processors must receive an iterator as their
first argument. The output of those functions can be anything. The result of
input processors will be appended to an internal list (in the Loader)
containing the collected values (for that field). The result of the output
processors is the value that will be finally assigned to the item.

The other thing you need to keep in mind is that the values returned by input
processors are collected internally (in lists) and then passed to output
processors to populate the fields.

Last, but not least, Scrapy comes with some commonly used processors built-in for convenience.

Declaring Item Loaders

Item Loaders are declared like Items, by using a class definition syntax. Here
is an example:

from scrapy.contrib.loader import ItemLoader
from scrapy.contrib.loader.processor import TakeFirst, MapCompose, Join

class ProductLoader(ItemLoader):

 default_output_processor = TakeFirst()

 name_in = MapCompose(unicode.title)
 name_out = Join()

 price_in = MapCompose(unicode.strip)

 # ...

As you can see, input processors are declared using the _in suffix while
output processors are declared using the _out suffix. And you can also
declare a default input/output processors using the
ItemLoader.default_input_processor and
ItemLoader.default_output_processor attributes.

Declaring Input and Output Processors

As seen in the previous section, input and output processors can be declared in
the Item Loader definition, and it’s very common to declare input processors
this way. However, there is one more place where you can specify the input and
output processors to use: in the Item Field
metadata. Here is an example:

from scrapy.item import Item, Field
from scrapy.contrib.loader.processor import MapCompose, Join, TakeFirst

from scrapy.utils.markup import remove_entities
from myproject.utils import filter_prices

class Product(Item):
 name = Field(
 input_processor=MapCompose(remove_entities),
 output_processor=Join(),
)
 price = Field(
 default=0,
 input_processor=MapCompose(remove_entities, filter_prices),
 output_processor=TakeFirst(),
)

The precedence order, for both input and output processors, is as follows:

	Item Loader field-specific attributes: field_in and field_out (most
precedence)

	Field metadata (input_processor and output_processor key)

	Item Loader defaults: ItemLoader.default_input_processor() and
ItemLoader.default_output_processor() (least precedence)

See also: Reusing and extending Item Loaders.

Item Loader Context

The Item Loader Context is a dict of arbitrary key/values which is shared among
all input and output processors in the Item Loader. It can be passed when
declaring, instantiating or using Item Loader. They are used to modify the
behaviour of the input/output processors.

For example, suppose you have a function parse_length which receives a text
value and extracts a length from it:

def parse_length(text, loader_context):
 unit = loader_context.get('unit', 'm')
 # ... length parsing code goes here ...
 return parsed_length

By accepting a loader_context argument the function is explicitly telling
the Item Loader that is able to receive an Item Loader context, so the Item
Loader passes the currently active context when calling it, and the processor
function (parse_length in this case) can thus use them.

There are several ways to modify Item Loader context values:

	By modifying the currently active Item Loader context
(context attribute):

loader = ItemLoader(product)
loader.context['unit'] = 'cm'

	On Item Loader instantiation (the keyword arguments of Item Loader
constructor are stored in the Item Loader context):

loader = ItemLoader(product, unit='cm')

	On Item Loader declaration, for those input/output processors that support
instatiating them with a Item Loader context. MapCompose is one of
them:

class ProductLoader(ItemLoader):
 length_out = MapCompose(parse_length, unit='cm')

ItemLoader objects

	
class scrapy.contrib.loader.ItemLoader([item,]**kwargs)

	Return a new Item Loader for populating the given Item. If no item is
given, one is instantiated automatically using the class in
default_item_class.

The item and the remaining keyword arguments are assigned to the Loader
context (accesible through the context attribute).

	
get_value(value, *processors, **kwargs)

	Process the given value by the given processors and keyword
arguments.

Available keyword arguments:

	Parameters:	re (str or compiled regex) – a regular expression to use for extracting data from the
given value using extract_regex() method,
applied before processors

Examples:

>>> from scrapy.contrib.loader.processor import TakeFirst
>>> loader.get_value(u'name: foo', TakeFirst(), unicode.upper, re='name: (.+)')
'FOO`

	
add_value(field_name, value, *processors, **kwargs)

	Process and then add the given value for the given field.

The value is first passed through get_value() by giving the
processors and kwargs, and then passed through the
field input processor and its result
appened to the data collected for that field. If the field already
contains collected data, the new data is added.

The given field_name can be None, in which case values for
multiple fields may be added. And the processed value should be a dict
with field_name mapped to values.

Examples:

loader.add_value('name', u'Color TV')
loader.add_value('colours', [u'white', u'blue'])
loader.add_value('length', u'100')
loader.add_value('name', u'name: foo', TakeFirst(), re='name: (.+)')
loader.add_value(None, {'name': u'foo', 'sex': u'male'})

	
replace_value(field_name, value)

	Similar to add_value() but replaces the collected data with the
new value instead of adding it.

	
load_item()

	Populate the item with the data collected so far, and return it. The
data collected is first passed through the output processors to get the final value to assign to each
item field.

	
get_collected_values(field_name)

	Return the collected values for the given field.

	
get_output_value(field_name)

	Return the collected values parsed using the output processor, for the
given field. This method doesn’t populate or modify the item at all.

	
get_input_processor(field_name)

	Return the input processor for the given field.

	
get_output_processor(field_name)

	Return the output processor for the given field.

	
item

	The Item object being parsed by this Item Loader.

	
context

	The currently active Context of this
Item Loader.

	
default_item_class

	An Item class (or factory), used to instantiate items when not given in
the constructor.

	
default_input_processor

	The default input processor to use for those fields which don’t specify
one.

	
default_output_processor

	The default output processor to use for those fields which don’t specify
one.

	
class scrapy.contrib.loader.XPathItemLoader([item, selector, response,]**kwargs)

	The XPathItemLoader class extends the ItemLoader class
providing more convenient mechanisms for extracting data from web pages
using XPath selectors.

XPathItemLoader objects accept two more additional parameters in
their constructors:

	Parameters:	
	selector (XPathSelector object) – The selector to extract data from, when using the
add_xpath() or replace_xpath() method.

	response (Response object) – The response used to construct the selector using the
default_selector_class, unless the selector argument is given,
in which case this argument is ignored.

	
get_xpath(xpath, *processors, **kwargs)

	Similar to ItemLoader.get_value() but receives an XPath instead of a
value, which is used to extract a list of unicode strings from the
selector associated with this XPathItemLoader.

	Parameters:	
	xpath (str) – the XPath to extract data from

	re (str or compiled regex) – a regular expression to use for extracting data from the
selected XPath region

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.get_xpath('//p[@class="product-name"]')
HTML snippet: <p id="price">the price is $1200</p>
loader.get_xpath('//p[@id="price"]', TakeFirst(), re='the price is (.*)')

	
add_xpath(field_name, xpath, *processors, **kwargs)

	Similar to ItemLoader.add_value() but receives an XPath instead of a
value, which is used to extract a list of unicode strings from the
selector associated with this XPathItemLoader.

See get_xpath() for kwargs.

	Parameters:	xpath (str) – the XPath to extract data from

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.add_xpath('name', '//p[@class="product-name"]')
HTML snippet: <p id="price">the price is $1200</p>
loader.add_xpath('price', '//p[@id="price"]', re='the price is (.*)')

	
replace_xpath(field_name, xpath, *processors, **kwargs)

	Similar to add_xpath() but replaces collected data instead of
adding it.

	
default_selector_class

	The class used to construct the selector of this
XPathItemLoader, if only a response is given in the constructor.
If a selector is given in the constructor this attribute is ignored.
This attribute is sometimes overridden in subclasses.

	
selector

	The XPathSelector object to extract data from.
It’s either the selector given in the constructor or one created from
the response given in the constructor using the
default_selector_class. This attribute is meant to be
read-only.

Reusing and extending Item Loaders

As your project grows bigger and acquires more and more spiders, maintenance
becomes a fundamental problem, specially when you have to deal with many
different parsing rules for each spider, having a lot of exceptions, but also
wanting to reuse the common processors.

Item Loaders are designed to ease the maintenance burden of parsing rules,
without losing flexibility and, at the same time, providing a convenient
mechanism for extending and overriding them. For this reason Item Loaders
support traditional Python class inheritance for dealing with differences of
specific spiders (or groups of spiders).

Suppose, for example, that some particular site encloses their product names in
three dashes (ie. ---Plasma TV---) and you don’t want to end up scraping
those dashes in the final product names.

Here’s how you can remove those dashes by reusing and extending the default
Product Item Loader (ProductLoader):

from scrapy.contrib.loader.processor import MapCompose
from myproject.ItemLoaders import ProductLoader

def strip_dashes(x):
 return x.strip('-')

class SiteSpecificLoader(ProductLoader):
 name_in = MapCompose(strip_dashes, ProductLoader.name_in)

Another case where extending Item Loaders can be very helpful is when you have
multiple source formats, for example XML and HTML. In the XML version you may
want to remove CDATA occurrences. Here’s an example of how to do it:

from scrapy.contrib.loader.processor import MapCompose
from myproject.ItemLoaders import ProductLoader
from myproject.utils.xml import remove_cdata

class XmlProductLoader(ProductLoader):
 name_in = MapCompose(remove_cdata, ProductLoader.name_in)

And that’s how you typically extend input processors.

As for output processors, it is more common to declare them in the field metadata,
as they usually depend only on the field and not on each specific site parsing
rule (as input processors do). See also:
Declaring Input and Output Processors.

There are many other possible ways to extend, inherit and override your Item
Loaders, and different Item Loaders hierarchies may fit better for different
projects. Scrapy only provides the mechanism; it doesn’t impose any specific
organization of your Loaders collection - that’s up to you and your project’s
needs.

Available built-in processors

Even though you can use any callable function as input and output processors,
Scrapy provides some commonly used processors, which are described below. Some
of them, like the MapCompose (which is typically used as input
processor) compose the output of several functions executed in order, to
produce the final parsed value.

Here is a list of all built-in processors:

	
class scrapy.contrib.loader.processor.Identity

	The simplest processor, which doesn’t do anything. It returns the original
values unchanged. It doesn’t receive any constructor arguments nor accepts
Loader contexts.

Example:

>>> from scrapy.contrib.loader.processor import Identity
>>> proc = Identity()
>>> proc(['one', 'two', 'three'])
['one', 'two', 'three']

	
class scrapy.contrib.loader.processor.TakeFirst

	Return the first non-null/non-empty value from the values received,
so it’s typically used as an output processor to single-valued fields.
It doesn’t receive any constructor arguments, nor accept Loader contexts.

Example:

>>> from scrapy.contrib.loader.processor import TakeFirst
>>> proc = TakeFirst()
>>> proc(['', 'one', 'two', 'three'])
'one'

	
class scrapy.contrib.loader.processor.Join(separator=u' ')

	Returns the values joined with the separator given in the constructor, which
defaults to u' '. It doesn’t accept Loader contexts.

When using the default separator, this processor is equivalent to the
function: u' '.join

Examples:

>>> from scrapy.contrib.loader.processor import Join
>>> proc = Join()
>>> proc(['one', 'two', 'three'])
u'one two three'
>>> proc = Join('
')
>>> proc(['one', 'two', 'three'])
u'one
two
three'

	
class scrapy.contrib.loader.processor.Compose(*functions, **default_loader_context)

	A processor which is constructed from the composition of the given
functions. This means that each input value of this processor is passed to
the first function, and the result of that function is passed to the second
function, and so on, until the last function returns the output value of
this processor.

By default, stop process on None value. This behaviour can be changed by
passing keyword argument stop_on_none=False.

Example:

>>> from scrapy.contrib.loader.processor import Compose
>>> proc = Compose(lambda v: v[0], str.upper)
>>> proc(['hello', 'world'])
'HELLO'

Each function can optionally receive a loader_context parameter. For
those which do, this processor will pass the currently active Loader
context through that parameter.

The keyword arguments passed in the constructor are used as the default
Loader context values passed to each function call. However, the final
Loader context values passed to functions are overridden with the currently
active Loader context accessible through the ItemLoader.context()
attribute.

	
class scrapy.contrib.loader.processor.MapCompose(*functions, **default_loader_context)

	A processor which is constructed from the composition of the given
functions, similar to the Compose processor. The difference with
this processor is the way internal results are passed among functions,
which is as follows:

The input value of this processor is iterated and each element is passed
to the first function, and the result of that function (for each element)
is concatenated to construct a new iterable, which is then passed to the
second function, and so on, until the last function is applied for each
value of the list of values collected so far. The output values of the last
function are concatenated together to produce the output of this processor.

Each particular function can return a value or a list of values, which is
flattened with the list of values returned by the same function applied to
the other input values. The functions can also return None in which
case the output of that function is ignored for further processing over the
chain.

This processor provides a convenient way to compose functions that only
work with single values (instead of iterables). For this reason the
MapCompose processor is typically used as input processor, since
data is often extracted using the
extract() method of selectors, which returns a list of unicode strings.

The example below should clarify how it works:

>>> def filter_world(x):
... return None if x == 'world' else x
...
>>> from scrapy.contrib.loader.processor import MapCompose
>>> proc = MapCompose(filter_world, unicode.upper)
>>> proc([u'hello', u'world', u'this', u'is', u'scrapy'])
[u'HELLO, u'THIS', u'IS', u'SCRAPY']

As with the Compose processor, functions can receive Loader contexts, and
constructor keyword arguments are used as default context values. See
Compose processor for more info.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Scrapy shell

The Scrapy shell is an interactive shell where you can try and debug your
scraping code very quickly, without having to run the spider. It’s meant to be
used for testing data extraction code, but you can actually use it for testing
any kind of code as it is also a regular Python shell.

The shell is used for testing XPath expressions and see how they work and what
data they extract from the web pages you’re trying to scrape. It allows you to
interactively test your XPaths while you’re writing your spider, without having
to run the spider to test every change.

Once you get familiarized with the Scrapy shell, you’ll see that it’s an
invaluable tool for developing and debugging your spiders.

If you have IPython [http://ipython.scipy.org/] installed, the Scrapy shell will use it (instead of the
standard Python console). The IPython [http://ipython.scipy.org/] console is much more powerful and
provides smart auto-completion and colorized output, among other things.

We highly recommend you install IPython [http://ipython.scipy.org/], specially if you’re working on
Unix systems (where IPython [http://ipython.scipy.org/] excels). See the IPython installation guide [http://ipython.scipy.org/doc/rel-0.9.1/html/install/index.html]
for more info.

Launch the shell

To launch the Scrapy shell you can use the shell command like
this:

scrapy shell <url>

Where the <url> is the URL you want to scrape.

Using the shell

The Scrapy shell is just a regular Python console (or IPython console if you
have it available) which provides some additional shortcut functions for
convenience.

Available Shortcuts

	shelp() - print a help with the list of available objects and shortcuts

	fetch(request_or_url) - fetch a new response from the given request or
URL and update all related objects accordingly.

	view(response) - open the given response in your local web browser, for
inspection. This will add a <base> tag [http://www.w3schools.com/TAGS/tag_base.asp] to the response body in order
for external links (such as images and style sheets) to display properly.
Note, however,that this will create a temporary file in your computer,
which won’t be removed automatically.

Available Scrapy objects

The Scrapy shell automatically creates some convenient objects from the
downloaded page, like the Response object and the
XPathSelector objects (for both HTML and XML
content).

Those objects are:

	spider - the Spider which is known to handle the URL, or a
BaseSpider object if there is no spider found for
the current URL

	request - a Request object of the last fetched
page. You can modify this request using replace() or
fetch a new request (without leaving the shell) using the fetch
shortcut.

	response - a Response object containing the last
fetched page

	hxs - a HtmlXPathSelector object constructed
with the last response fetched

	xxs - a XmlXPathSelector object constructed
with the last response fetched

	settings - the current Scrapy settings

Example of shell session

Here’s an example of a typical shell session where we start by scraping the
http://scrapy.org page, and then proceed to scrape the http://slashdot.org
page. Finally, we modify the (Slashdot) request method to POST and re-fetch it
getting a HTTP 405 (method not allowed) error. We end the session by typing
Ctrl-D (in Unix systems) or Ctrl-Z in Windows.

Keep in mind that the data extracted here may not be the same when you try it,
as those pages are not static and could have changed by the time you test this.
The only purpose of this example is to get you familiarized with how the Scrapy
shell works.

First, we launch the shell:

scrapy shell http://scrapy.org --nolog

Then, the shell fetches the URL (using the Scrapy downloader) and prints the
list of available objects and useful shortcuts (you’ll notice that these lines
all start with the [s] prefix):

[s] Available objects
[s] hxs <HtmlXPathSelector (http://scrapy.org) xpath=None>
[s] item Item()
[s] request <http://scrapy.org>
[s] response <http://scrapy.org>
[s] settings <Settings 'mybot.settings'>
[s] spider <scrapy.spider.models.BaseSpider object at 0x2bed9d0>
[s] xxs <XmlXPathSelector (http://scrapy.org) xpath=None>
[s] Useful shortcuts:
[s] shelp() Prints this help.
[s] fetch(req_or_url) Fetch a new request or URL and update objects
[s] view(response) View response in a browser

>>>

After that, we can star playing with the objects:

>>> hxs.select("//h2/text()").extract()[0]
u'Welcome to Scrapy'

>>> fetch("http://slashdot.org")
[s] Available Scrapy objects:
[s] hxs <HtmlXPathSelector (http://slashdot.org) xpath=None>
[s] item JobItem()
[s] request <GET http://slashdot.org>
[s] response <200 http://slashdot.org>
[s] settings <Settings 'jobsbot.settings'>
[s] spider <BaseSpider 'default' at 0x3c44a10>
[s] xxs <XmlXPathSelector (http://slashdot.org) xpath=None>
[s] Useful shortcuts:
[s] shelp() Shell help (print this help)
[s] fetch(req_or_url) Fetch request (or URL) and update local objects
[s] view(response) View response in a browser

>>> hxs.select("//h2/text()").extract()
[u'News for nerds, stuff that matters']

>>> request = request.replace(method="POST")

>>> fetch(request)
2009-04-03 00:57:39-0300 [default] ERROR: Downloading <http://slashdot.org> from <None>: 405 Method Not Allowed

>>>

Invoking the shell from spiders to inspect responses

Sometimes you want to inspect the responses that are being processed in a
certain point of your spider, if only to check that response you expect is
getting there.

This can be achieved by using the scrapy.shell.inspect_response function.

Here’s an example of how you would call it from your spider:

class MySpider(BaseSpider):
 ...

 def parse(self, response):
 if response.url == 'http://www.example.com/products.php':
 from scrapy.shell import inspect_response
 inspect_response(response)

 # ... your parsing code ..

When you run the spider, you will get something similar to this:

2009-08-27 19:15:25-0300 [example.com] DEBUG: Crawled <http://www.example.com/> (referer: <None>)
2009-08-27 19:15:26-0300 [example.com] DEBUG: Crawled <http://www.example.com/products.php> (referer: <http://www.example.com/>)
[s] Available objects
[s] hxs <HtmlXPathSelector (http://www.example.com/products.php) xpath=None>
...

>>> response.url
'http://www.example.com/products.php'

Then, you can check if the extraction code is working:

>>> hxs.select('//h1')
[]

Nope, it doesn’t. So you can open the response in your web browser and see if
it’s the response you were expecting:

>>> view(response)
>>>

Finally you hit Ctrl-D (or Ctrl-Z in Windows) to exit the shell and resume the
crawling:

>>> ^D
2009-08-27 19:15:25-0300 [example.com] DEBUG: Crawled <http://www.example.com/product.php?id=1> (referer: <None>)
2009-08-27 19:15:25-0300 [example.com] DEBUG: Crawled <http://www.example.com/product.php?id=2> (referer: <None>)
...

Note that you can’t use the fetch shortcut here since the Scrapy engine is
blocked by the shell. However, after you leave the shell, the spider will
continue crawling where it stopped, as shown above.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Item Pipeline

After an item has been scraped by a spider, it is sent to the Item Pipeline
which process it through several components that are executed sequentially.

Each item pipeline component (sometimes referred as just “Item Pipeline”) is a
Python class that implements a simple method. They receive an Item and perform
an action over it, also deciding if the Item should continue through the
pipeline or be dropped and no longer processed.

Typical use for item pipelines are:

	cleansing HTML data

	validating scraped data (checking that the items contain certain fields)

	checking for duplicates (and dropping them)

	storing the scraped item in a database

Writing your own item pipeline

Writing your own item pipeline is easy. Each item pipeline component is a
single Python class that must implement the following method:

	
process_item(item, spider)

	This method is called for every item pipeline component and must either return
a Item (or any descendant class) object or raise a
DropItem exception. Dropped items are no longer
processed by further pipeline components.

	Parameters:	
	item (Item object) – the item scraped

	spider (BaseSpider object) – the spider which scraped the item

Additionally, they may also implement the following methods:

	
open_spider(spider)

	This method is called when the spider is opened.

	Parameters:	spider (BaseSpider object) – the spider which was opened

	
close_spider(spider)

	This method is called when the spider is closed.

	Parameters:	spider (BaseSpider object) – the spider which was closed

Item pipeline example

Price validation and dropping items with no prices

Let’s take a look at the following hypothetic pipeline that adjusts the price
attribute for those items that do not include VAT (price_excludes_vat
attribute), and drops those items which don’t contain a price:

from scrapy.exceptions import DropItem

class PricePipeline(object):

 vat_factor = 1.15

 def process_item(self, item, spider):
 if item['price']:
 if item['price_excludes_vat']:
 item['price'] = item['price'] * self.vat_factor
 return item
 else:
 raise DropItem("Missing price in %s" % item)

Write items to a JSON file

The following pipeline stores all scraped items (from all spiders) into a a
single items.jl file, containing one item per line serialized in JSON
format:

import json

class JsonWriterPipeline(object):

 def __init__(self):
 self.file = open('items.jl', 'wb')

 def process_item(self, item, spider):
 line = json.dumps(dict(item)) + "\n"
 self.file.write(line)
 return item

Note

The purpose of JsonWriterPipeline is just to introduce how to write
item pipelines. If you really want to store all scraped items into a JSON
file you should use the Feed exports.

Activating an Item Pipeline component

To activate an Item Pipeline component you must add its class to the
ITEM_PIPELINES list, like in the following example:

ITEM_PIPELINES = [
 'myproject.pipeline.PricePipeline',
 'myproject.pipeline.JsonWriterPipeline',
]

Item pipeline example with resources per spider

Sometimes you need to keep resources about the items processed grouped per
spider, and delete those resource when a spider finishes.

An example is a filter that looks for duplicate items, and drops those items
that were already processed. Let say that our items have an unique id, but our
spider returns multiples items with the same id:

from scrapy.xlib.pydispatch import dispatcher
from scrapy import signals
from scrapy.exceptions import DropItem

class DuplicatesPipeline(object):
 def __init__(self):
 self.duplicates = {}
 dispatcher.connect(self.spider_opened, signals.spider_opened)
 dispatcher.connect(self.spider_closed, signals.spider_closed)

 def spider_opened(self, spider):
 self.duplicates[spider] = set()

 def spider_closed(self, spider):
 del self.duplicates[spider]

 def process_item(self, item, spider):
 if item['id'] in self.duplicates[spider]:
 raise DropItem("Duplicate item found: %s" % item)
 else:
 self.duplicates[spider].add(item['id'])
 return item

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Feed exports

New in version 0.10.

One of the most frequently required features when implementing scrapers is
being able to store the scraped data properly and, quite often, that means
generating a “export file” with the scraped data (commonly called “export
feed”) to be consumed by other systems.

Scrapy provides this functionality out of the box with the Feed Exports, which
allows you to generate a feed with the scraped items, using multiple
serialization formats and storage backends.

Serialization formats

For serializing the scraped data, the feed exports use the Item exporters and these formats are supported out of the box:

	JSON

	JSON lines

	CSV

	XML

But you can also extend the supported format through the
FEED_EXPORTERS setting.

JSON

	FEED_FORMAT: json

	Exporter used: JsonItemExporter

	See this warning if you’re using JSON with large feeds

JSON lines

	FEED_FORMAT: jsonlines

	Exporter used: JsonLinesItemExporter

CSV

	FEED_FORMAT: csv

	Exporter used: CsvItemExporter

XML

	FEED_FORMAT: xml

	Exporter used: XmlItemExporter

Storages

When using the feed exports you define where to store the feed using a URI [http://en.wikipedia.org/wiki/Uniform_Resource_Identifier]
(through the FEED_URI setting). The feed exports supports multiple
storage backend types which are defined by the URI scheme.

The storages backends supported out of the box are:

	Local filesystem

	FTP

	S3 (requires boto [http://code.google.com/p/boto/])

	Standard output

Some storage backends may be unavailable if the required external libraries are
not available. For example, the S3 backend is only available if the boto [http://code.google.com/p/boto/]
library is installed.

Storage URI parameters

The storage URI can also contain parameters that get replaced when the feed is
being created. These parameters are:

	%(time)s - gets replaced by a timestamp when the feed is being created

	%(name)s - gets replaced by the spider name

Any other named parmeter gets replaced by the spider attribute of the same
name. For example, %(site_id)s would get replaced by the spider.site_id
attribute the moment the feed is being created.

Here are some examples to illustrate:

	Store in FTP using one directory per spider:
	ftp://user:password@ftp.example.com/scraping/feeds/%(name)s/%(time)s.json

	Store in S3 using one directory per spider:
	s3://mybucket/scraping/feeds/%(name)s/%(time)s.json

Storage backends

Local filesystem

The feeds are stored in the local filesystem.

	URI scheme: file

	Example URI: file:///tmp/export.csv

	Required external libraries: none

Note that for the local filesystem storage (only) you can omit the scheme if
you specify an absolute path like /tmp/export.csv. This only works on Unix
systems though.

FTP

The feeds are stored in a FTP server.

	URI scheme: ftp

	Example URI: ftp://user:pass@ftp.example.com/path/to/export.csv

	Required external libraries: none

S3

The feeds are stored on Amazon S3 [http://aws.amazon.com/s3/].

	URI scheme: s3

	Example URIs:
	s3://mybucket/path/to/export.csv

	s3://aws_key:aws_secret@mybucket/path/to/export.csv

	Required external libraries: boto [http://code.google.com/p/boto/]

The AWS credentials can be passed as user/password in the URI, or they can be
passed through the following settings:

	AWS_ACCESS_KEY_ID

	AWS_SECRET_ACCESS_KEY

Standard output

The feeds are written to the standard output of the Scrapy process.

	URI scheme: stdout

	Example URI: stdout:

	Required external libraries: none

Settings

These are the settings used for configuring the feed exports:

	FEED_URI (mandatory)

	FEED_FORMAT

	FEED_STORAGES

	FEED_EXPORTERS

	FEED_STORE_EMPTY

FEED_URI

Default: None

The URI of the export feed. See Storage backends for
supported URI schemes.

This setting is required for enabling the feed exports.

FEED_FORMAT

The serialization format to be used for the feed. See
Serialization formats for possible values.

FEED_STORE_EMPTY

Default: False

Whether to export empty feeds (ie. feeds with no items).

FEED_STORAGES

Default:: {}

A dict containing additional feed storage backends supported by your project.
The keys are URI schemes and the values are paths to storage classes.

FEED_STORAGES_BASE

Default:

{
 '': 'scrapy.contrib.feedexport.FileFeedStorage',
 'file': 'scrapy.contrib.feedexport.FileFeedStorage',
 'stdout': 'scrapy.contrib.feedexport.StdoutFeedStorage',
 's3': 'scrapy.contrib.feedexport.S3FeedStorage',
 'ftp': 'scrapy.contrib.feedexport.FTPFeedStorage',
}

A dict containing the built-in feed storage backends supported by Scrapy.

FEED_EXPORTERS

Default:: {}

A dict containing additional exporters supported by your project. The keys are
URI schemes and the values are paths to Item exporter
classes.

FEED_EXPORTERS_BASE

Default:

FEED_EXPORTERS_BASE = {
 'json': 'scrapy.contrib.exporter.JsonItemExporter',
 'jsonlines': 'scrapy.contrib.exporter.JsonLinesItemExporter',
 'csv': 'scrapy.contrib.exporter.CsvItemExporter',
 'xml': 'scrapy.contrib.exporter.XmlItemExporter',
}

A dict containing the built-in feed exporters supported by Scrapy.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Logging

Scrapy provides a logging facility which can be used through the
scrapy.log module. The current underlying implementation uses Twisted
logging [http://twistedmatrix.com/projects/core/documentation/howto/logging.html] but this may change in the future.

The logging service must be explicitly started through the scrapy.log.start() function.

Log levels

Scrapy provides 5 logging levels:

	CRITICAL - for critical errors

	ERROR - for regular errors

	WARNING - for warning messages

	INFO - for informational messages

	DEBUG - for debugging messages

How to set the log level

You can set the log level using the –loglevel/-L command line option, or
using the LOG_LEVEL setting.

How to log messages

Here’s a quick example of how to log a message using the WARNING level:

from scrapy import log
log.msg("This is a warning", level=log.WARNING)

Logging from Spiders

The recommended way to log from spiders is by using the Spider
log() method, which already populates the
spider argument of the scrapy.log.msg() function. The other arguments
are passed directly to the msg() function.

scrapy.log module

	
scrapy.log.started

	A boolean which is True if logging has been started or False otherwise.

	
scrapy.log.start(logfile=None, loglevel=None, logstdout=None)

	Start the logging facility. This must be called before actually logging any
messages. Otherwise, messages logged before this call will get lost.

	Parameters:	
	logfile (str) – the file path to use for logging output. If omitted, the
LOG_FILE setting will be used. If both are None, the log
will be sent to standard error.

	loglevel – the minimum logging level to log. Availables values are:
CRITICAL, ERROR, WARNING, INFO and
DEBUG.

	logstdout (boolean) – if True, all standard output (and error) of your
application will be logged instead. For example if you “print ‘hello’”
it will appear in the Scrapy log. If ommited, the LOG_STDOUT
setting will be used.

	
scrapy.log.msg(message, level=INFO, spider=None)

	Log a message

	Parameters:	
	message (str) – the message to log

	level – the log level for this message. See
Log levels.

	spider (BaseSpider object) – the spider to use for logging this message. This parameter
should always be used when logging things related to a particular
spider.

	
scrapy.log.CRITICAL

	Log level for critical errors

	
scrapy.log.ERROR

	Log level for errors

	
scrapy.log.WARNING

	Log level for warnings

	
scrapy.log.INFO

	Log level for informational messages (recommended level for production
deployments)

	
scrapy.log.DEBUG

	Log level for debugging messages (recommended level for development)

Logging settings

These settings can be used to configure the logging:

	LOG_ENABLED

	LOG_ENCODING

	LOG_FILE

	LOG_LEVEL

	LOG_STDOUT

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Stats Collection

Overview

Scrapy provides a convenient service for collecting stats in the form of
key/values, both globally and per spider. It’s called the Stats Collector, and
it’s a singleton which can be imported and used quickly, as illustrated by the
examples in the Common Stats Collector uses section below.

The stats collection is enabled by default but can be disabled through the
STATS_ENABLED setting.

However, the Stats Collector is always available, so you can always import it
in your module and use its API (to increment or set new stat keys), regardless
of whether the stats collection is enabled or not. If it’s disabled, the API
will still work but it won’t collect anything. This is aimed at simplifying the
stats collector usage: you should spend no more than one line of code for
collecting stats in your spider, Scrapy extension, or whatever code you’re
using the Stats Collector from.

Another feature of the Stats Collector is that it’s very efficient (when
enabled) and extremely efficient (almost unnoticeable) when disabled.

The Stats Collector keeps one stats table per open spider and one global stats
table. You can’t set or get stats from a closed spider, but the spider-specific
stats table is automatically opened when the spider is opened, and closed when
the spider is closed.

Common Stats Collector uses

Import the stats collector:

from scrapy.stats import stats

Set global stat value:

stats.set_value('hostname', socket.gethostname())

Increment global stat value:

stats.inc_value('spiders_crawled')

Set global stat value only if greater than previous:

stats.max_value('max_items_scraped', value)

Set global stat value only if lower than previous:

stats.min_value('min_free_memory_percent', value)

Get global stat value:

>>> stats.get_value('spiders_crawled')
8

Get all global stats (ie. not particular to any spider):

>>> stats.get_stats()
{'hostname': 'localhost', 'spiders_crawled': 8}

Set spider specific stat value (spider stats must be opened first, but this
task is handled automatically by the Scrapy engine):

stats.set_value('start_time', datetime.now(), spider=some_spider)

Where some_spider is a BaseSpider object.

Increment spider-specific stat value:

stats.inc_value('pages_crawled', spider=some_spider)

Set spider-specific stat value only if greater than previous:

stats.max_value('max_items_scraped', value, spider=some_spider)

Set spider-specific stat value only if lower than previous:

stats.min_value('min_free_memory_percent', value, spider=some_spider)

Get spider-specific stat value:

>>> stats.get_value('pages_crawled', spider=some_spider)
1238

Get all stats from a given spider:

>>> stats.get_stats('pages_crawled', spider=some_spider)
{'pages_crawled': 1238, 'start_time': datetime.datetime(2009, 7, 14, 21, 47, 28, 977139)}

Stats Collector API

There are several Stats Collectors available under the
scrapy.statscol module and they all implement the Stats
Collector API defined by the StatsCollector
class (which they all inherit from).

	
class scrapy.statscol.StatsCollector

	
	
get_value(key, default=None, spider=None)

	Return the value for the given stats key or default if it doesn’t exist.
If spider is None the global stats table is consulted, otherwise the
spider specific one is. If the spider is not yet opened a KeyError
exception is raised.

	
get_stats(spider=None)

	Get all stats from the given spider (if spider is given) or all global
stats otherwise, as a dict. If spider is not opened KeyError is
raised.

	
set_value(key, value, spider=None)

	Set the given value for the given stats key on the global stats (if
spider is not given) or the spider-specific stats (if spider is given),
which must be opened or a KeyError will be raised.

	
set_stats(stats, spider=None)

	Set the given stats (as a dict) for the given spider. If the spider is
not opened a KeyError will be raised.

	
inc_value(key, count=1, start=0, spider=None)

	Increment the value of the given stats key, by the given count,
assuming the start value given (when it’s not set). If spider is not
given the global stats table is used, otherwise the spider-specific
stats table is used, which must be opened or a KeyError will be
raised.

	
max_value(key, value, spider=None)

	Set the given value for the given key only if current value for the
same key is lower than value. If there is no current value for the
given key, the value is always set. If spider is not given, the global
stats table is used, otherwise the spider-specific stats table is used,
which must be opened or a KeyError will be raised.

	
min_value(key, value, spider=None)

	Set the given value for the given key only if current value for the
same key is greater than value. If there is no current value for the
given key, the value is always set. If spider is not given, the global
stats table is used, otherwise the spider-specific stats table is used,
which must be opened or a KeyError will be raised.

	
clear_stats(spider=None)

	Clear all global stats (if spider is not given) or all spider-specific
stats if spider is given, in which case it must be opened or a
KeyError will be raised.

	
iter_spider_stats()

	Return a iterator over (spider, spider_stats) for each open spider
currently tracked by the stats collector, where spider_stats is the
dict containing all spider-specific stats.

Global stats are not included in the iterator. If you want to get
those, use get_stats() method.

	
open_spider(spider)

	Open the given spider for stats collection. This method must be called
prior to working with any stats specific to that spider, but this task
is handled automatically by the Scrapy engine.

	
close_spider(spider)

	Close the given spider. After this is called, no more specific stats
for this spider can be accessed. This method is called automatically on
the spider_closed signal.

Available Stats Collectors

Besides the basic StatsCollector there are other Stats Collectors
available in Scrapy which extend the basic Stats Collector. You can select
which Stats Collector to use through the STATS_CLASS setting. The
default Stats Collector used is the MemoryStatsCollector.

When stats are disabled (through the STATS_ENABLED setting) the
STATS_CLASS setting is ignored and the DummyStatsCollector
is used.

MemoryStatsCollector

	
class scrapy.statscol.MemoryStatsCollector

	A simple stats collector that keeps the stats of the last scraping run (for
each spider) in memory, after they’re closed. The stats can be accessed
through the spider_stats attribute, which is a dict keyed by spider
domain name.

This is the default Stats Collector used in Scrapy.

	
spider_stats

	A dict of dicts (keyed by spider name) containing the stats of the last
scraping run for each spider.

DummyStatsCollector

	
class scrapy.statscol.DummyStatsCollector

	A Stats collector which does nothing but is very efficient. This is the
Stats Collector used when stats are disabled (through the
STATS_ENABLED setting).

SimpledbStatsCollector

	
class scrapy.contrib.statscol.SimpledbStatsCollector

	A Stats collector which persists stats to Amazon SimpleDB [http://aws.amazon.com/simpledb/], using one
SimpleDB item per scraping run (ie. it keeps history of all scraping runs).
The data is persisted to the SimpleDB domain specified by the
STATS_SDB_DOMAIN setting. The domain will be created if it
doesn’t exist.

In addition to the existing stats keys, the following keys are added at
persitance time:

	spider: the spider name (so you can use it later for querying stats
for that spider)

	timestamp: the timestamp when the stats were persisted

Both the spider and timestamp are used to generate the SimpleDB
item name in order to avoid overwriting stats of previous scraping runs.

As required by SimpleDB [http://docs.amazonwebservices.com/AmazonSimpleDB/2009-04-15/DeveloperGuide/ZeroPadding.html], datetimes are stored in ISO 8601 format and
numbers are zero-padded to 16 digits. Negative numbers are not currently
supported.

This Stats Collector requires the boto [http://code.google.com/p/boto/] library.

This Stats Collector can be configured through the following settings:

STATS_SDB_DOMAIN

Default: 'scrapy_stats'

A string containing the SimpleDB domain to use in the
SimpledbStatsCollector.

STATS_SDB_ASYNC

Default: False

If True, communication with SimpleDB will be performed asynchronously. If
False blocking IO will be used instead. This is the default as using
asynchronous communication can result in the stats not being persisted if the
Scrapy engine is shut down in the middle (for example, when you run only one
spider in a process and then exit).

Stats signals

The Stats Collector provides some signals for extending the stats collection
functionality:

	
scrapy.signals.stats_spider_opened(spider)

	Sent right after the stats spider is opened. You can use this signal to add
startup stats for the spider (example: start time).

	Parameters:	spider (str) – the stats spider just opened

	
scrapy.signals.stats_spider_closing(spider, reason)

	Sent just before the stats spider is closed. You can use this signal to add
some closing stats (example: finish time).

	Parameters:	
	spider (str) – the stats spider about to be closed

	reason (str) – the reason why the spider is being closed. See
spider_closed signal for more info.

	
scrapy.signals.stats_spider_closed(spider, reason, spider_stats)

	Sent right after the stats spider is closed. You can use this signal to
collect resources, but not to add any more stats as the stats spider has
already been closed (use stats_spider_closing for that instead).

	Parameters:	
	spider (str) – the stats spider just closed

	reason (dict) – the reason why the spider was closed. See
spider_closed signal for more info.

	spider_stats – the stats of the spider just closed.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Sending e-mail

Although Python makes sending e-mails relatively easy via the smtplib [http://docs.python.org/library/smtplib.html]
library, Scrapy provides its own facility for sending e-mails which is very
easy to use and it’s implemented using Twisted non-blocking IO [http://twistedmatrix.com/projects/core/documentation/howto/async.html], to avoid
interfering with the non-blocking IO of the crawler. It also provides a
simple API for sending attachments and it’s very easy to configure, with a few
settings <topics-email-settings.

Quick example

Here’s a quick example of how to send an e-mail (without attachments):

from scrapy.mail import MailSender

mailer = MailSender()
mailer.send(to=["someone@example.com"], subject="Some subject", body="Some body", cc=["another@example.com"])

MailSender class reference

MailSender is the preferred class to use for sending emails from Scrapy, as it
uses Twisted non-blocking IO [http://twistedmatrix.com/projects/core/documentation/howto/async.html], like the rest of the framework.

	
MailSender(smtphost=None, mailfrom=None, smtpuser=None, smtppass=None, smtpport=None):

	

	Parameters:	
	smtphost (str) – the SMTP host to use for sending the emails. If omitted, the
MAIL_HOST setting will be used.

	mailfrom (str) – the address used to send emails (in the From: header).
If omitted, the MAIL_FROM setting will be used.

	smtpuser – the SMTP user. If omitted, the MAIL_USER
setting will be used. If not given, no SMTP authentication will be
performed.

	smtppass (str) – the SMTP pass for authetnication.

	smtpport (int) – the SMTP port to connect to

	
scrapy.mail.send(to, subject, body, cc=None, attachs=())

	Send email to the given recipients. Emits the mail_sent signal.

	Parameters:	
	to (list) – the e-mail recipients

	subject (str) – the subject of the e-mail

	cc (list) – the e-mails to CC

	body (str) – the e-mail body

	attachs (iterable) – an iterable of tuples (attach_name, mimetype,
file_object) where attach_name is a string with the name that will
appear on the e-mail’s attachment, mimetype is the mimetype of the
attachment and file_object is a readable file object with the
contents of the attachment

Mail settings

These settings define the default constructor values of the MailSender
class, and can be used to configure e-mail notifications in your project without
writing any code (for those extensions and code that uses MailSender).

MAIL_FROM

Default: 'scrapy@localhost'

Sender email to use (From: header) for sending emails.

MAIL_HOST

Default: 'localhost'

SMTP host to use for sending emails.

MAIL_PORT

Default: 25

SMTP port to use for sending emails.

MAIL_USER

Default: None

User to use for SMTP authentication. If disabled no SMTP authentication will be
performed.

MAIL_PASS

Default: None

Password to use for SMTP authentication, along with MAIL_USER.

Mail signals

	
scrapy.mail.mail_sent(to, subject, body, cc, attachs, msg)

	Emitted by MailSender.send() after an email has been sent.

	Parameters:	
	to (list) – the e-mail recipients

	subject (str) – the subject of the e-mail

	cc (list) – the e-mails to CC

	body (str) – the e-mail body

	attachs (iterable) – an iterable of tuples (attach_name, mimetype,
file_object) where attach_name is a string with the name that will
appear on the e-mail’s attachment, mimetype is the mimetype of the
attachment and file_object is a readable file object with the
contents of the attachment

	msg (MIMEMultipart or MIMENonMultipart) – the generated message

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Telnet Console

Scrapy comes with a built-in telnet console for inspecting and controlling a
Scrapy running process. The telnet console is just a regular python shell
running inside the Scrapy process, so you can do literally anything from it.

The telnet console is a built-in Scrapy extension which comes enabled by default, but you can also
disable it if you want. For more information about the extension itself see
Telnet console extension.

How to access the telnet console

The telnet console listens in the TCP port defined in the
TELNETCONSOLE_PORT setting, which defaults to 6023. To access
the console you need to type:

telnet localhost 6023
>>>

You need the telnet program which comes installed by default in Windows, and
most Linux distros.

Available variables in the telnet console

The telnet console is like a regular Python shell running inside the Scrapy
process, so you can do anything from it including importing new modules, etc.

However, the telnet console comes with some default variables defined for
convenience:

	Shortcut
	Description

	manager
	the Project Crawler object (scrapy.project.crawler)

	engine
	the Scrapy engine object (scrapy.project.crawler.engine)

	extensions
	the Extension Manager (scrapy.project.crawler.extensions)

	stats
	the Stats Collector (scrapy.stats.stats)

	settings
	the Scrapy settings object (scrapy.conf.settings)

	est
	print a report of the current engine status

	prefs
	for memory debugging (see Debugging memory leaks)

	p
	a shortcut to the pprint.pprint [http://docs.python.org/library/pprint.html#pprint.pprint] function

	hpy
	for memory debugging (see Debugging memory leaks)

Telnet console usage examples

Here are some example tasks you can do with the telnet console:

View engine status

You can use the est() method of the Scrapy engine to quickly show its state
using the telnet console:

telnet localhost 6023
>>> est()
Execution engine status

datetime.now()-self.start_time : 0:00:09.051588
self.is_idle() : False
self.scheduler.is_idle() : False
len(self.scheduler.pending_requests) : 1
self.downloader.is_idle() : False
len(self.downloader.sites) : 1
self.downloader.has_capacity() : True
self.pipeline.is_idle() : False
len(self.pipeline.domaininfo) : 1
len(self._scraping) : 1

example.com
 self.domain_is_idle(domain) : False
 self.closing.get(domain) : None
 self.scheduler.domain_has_pending_requests(domain) : True
 len(self.scheduler.pending_requests[domain]) : 97
 len(self.downloader.sites[domain].queue) : 17
 len(self.downloader.sites[domain].active) : 25
 len(self.downloader.sites[domain].transferring) : 8
 self.downloader.sites[domain].closing : False
 self.downloader.sites[domain].lastseen : 2009-06-23 15:20:16.563675
 self.pipeline.domain_is_idle(domain) : True
 len(self.pipeline.domaininfo[domain]) : 0
 len(self._scraping[domain]) : 0

Pause, resume and stop the Scrapy engine

To pause:

telnet localhost 6023
>>> engine.pause()
>>>

To resume:

telnet localhost 6023
>>> engine.unpause()
>>>

To stop:

telnet localhost 6023
>>> engine.stop()
Connection closed by foreign host.

Telnet Console signals

	
scrapy.telnet.update_telnet_vars(telnet_vars)

	Sent just before the telnet console is opened. You can hook up to this
signal to add, remove or update the variables that will be available in the
telnet local namespace. In order to do that, you need to update the
telnet_vars dict in your handler.

	Parameters:	telnet_vars (dict) – the dict of telnet variables

Telnet settings

These are the settings that control the telnet console’s behaviour:

TELNETCONSOLE_PORT

Default: [6023, 6073]

The port range to use for the etlnet console. If set to None or 0, a
dynamically assigned port is used.

TELNETCONSOLE_HOST

Default: '0.0.0.0'

The interface the telnet console should listen on

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Web Service

Scrapy comes with a built-in web service for monitoring and controlling a
running crawler. The service exposes most resources using the JSON-RPC 2.0 [http://www.jsonrpc.org/]
protocol, but there are also other (read-only) resources which just output JSON
data.

Provides an extensible web service for managing a Scrapy process. It’s enabled
by the WEBSERVICE_ENABLED setting. The web server will listen in the
port specified in WEBSERVICE_PORT, and will log to the file
specified in WEBSERVICE_LOGFILE.

The web service is a built-in Scrapy extension
which comes enabled by default, but you can also disable it if you’re running
tight on memory.

Web service resources

The web service contains several resources, defined in the
WEBSERVICE_RESOURCES setting. Each resource provides a different
functionality. See Available JSON-RPC resources for a list of
resources available by default.

Althought you can implement your own resources using any protocol, there are
two kinds of resources bundled with Scrapy:

	Simple JSON resources - which are read-only and just output JSON data

	JSON-RPC resources - which provide direct access to certain Scrapy objects
using the JSON-RPC 2.0 [http://www.jsonrpc.org/] protocol

Available JSON-RPC resources

These are the JSON-RPC resources available by default in Scrapy:

Crawler JSON-RPC resource

	
class scrapy.contrib.webservice.crawler.CrawlerResource

	Provides access to the main Crawler object that controls the Scrapy
process.

Available by default at: http://localhost:6080/crawler

Stats Collector JSON-RPC resource

	
class scrapy.contrib.webservice.stats.StatsResource

	Provides access to the Stats Collector used by the crawler.

Available by default at: http://localhost:6080/stats

Spider Manager JSON-RPC resource

You can access the spider manager JSON-RPC resource through the
Crawler JSON-RPC resource at: http://localhost:6080/crawler/spiders

Extension Manager JSON-RPC resource

You can access the extension manager JSON-RPC resource through the
Crawler JSON-RPC resource at: http://localhost:6080/crawler/spiders

Available JSON resources

These are the JSON resources available by default:

Engine status JSON resource

	
class scrapy.contrib.webservice.enginestatus.EngineStatusResource

	Provides access to engine status metrics.

Available by default at: http://localhost:6080/enginestatus

Web service settings

These are the settings that control the web service behaviour:

WEBSERVICE_ENABLED

Default: True

A boolean which specifies if the web service will be enabled (provided its
extension is also enabled).

WEBSERVICE_LOGFILE

Default: None

A file to use for logging HTTP requests made to the web service. If unset web
the log is sent to standard scrapy log.

WEBSERVICE_PORT

Default: [6080, 7030]

The port range to use for the web service. If set to None or 0, a
dynamically assigned port is used.

WEBSERVICE_HOST

Default: '0.0.0.0'

The interface the web service should listen on

WEBSERVICE_RESOURCES

Default: {}

The list of web service resources enabled for your project. See
Web service resources. These are added to the ones available by
default in Scrapy, defined in the WEBSERVICE_RESOURCES_BASE setting.

WEBSERVICE_RESOURCES_BASE

Default:

{
 'scrapy.contrib.webservice.crawler.CrawlerResource': 1,
 'scrapy.contrib.webservice.enginestatus.EngineStatusResource': 1,
 'scrapy.contrib.webservice.stats.StatsResource': 1,
}

The list of web service resources available by default in Scrapy. You shouldn’t
change this setting in your project, change WEBSERVICE_RESOURCES
instead. If you want to disable some resource set its value to None in
WEBSERVICE_RESOURCES.

Writing a web service resource

Web service resources are implemented using the Twisted Web API. See this
Twisted Web guide [http://jcalderone.livejournal.com/50562.html] for more information on Twisted web and Twisted web
resources.

To write a web service resource you should subclass the JsonResource or
JsonRpcResource classes and implement the renderGET method.

	
class scrapy.webservice.JsonResource

	A subclass of twisted.web.resource.Resource [http://twistedmatrix.com/documents/10.0.0/api/twisted.web.resource.Resource.html] that implements a JSON web
service resource. See

	
ws_name

	The name by which the Scrapy web service will known this resource, and
also the path wehere this resource will listen. For example, assuming
Scrapy web service is listening on http://localhost:6080/ and the
ws_name is 'resource1' the URL for that resource will be:

http://localhost:6080/resource1/

	
class scrapy.webservice.JsonRpcResource(target=None)

	This is a subclass of JsonResource for implementing JSON-RPC
resources. JSON-RPC resources wrap Python (Scrapy) objects around a
JSON-RPC API. The resource wrapped must be returned by the
get_target() method, which returns the target passed in the
constructor by default

	
get_target()

	Return the object wrapped by this JSON-RPC resource. By default, it
returns the object passed on the constructor.

Examples of web service resources

StatsResource (JSON-RPC resource)

from scrapy.webservice import JsonRpcResource
from scrapy.stats import stats

class StatsResource(JsonRpcResource):

 ws_name = 'stats'

 def __init__(self, _stats=stats):
 JsonRpcResource.__init__(self)
 self._target = _stats

EngineStatusResource (JSON resource)

from scrapy.webservice import JsonResource
from scrapy.project import crawler
from scrapy.utils.engine import get_engine_status

class EngineStatusResource(JsonResource):

 ws_name = 'enginestatus'

 def __init__(self, spider_name=None, _crawler=crawler):
 JsonResource.__init__(self)
 self._spider_name = spider_name
 self.isLeaf = spider_name is not None
 self._crawler = _crawler

 def render_GET(self, txrequest):
 status = get_engine_status(self._crawler.engine)
 if self._spider_name is None:
 return status
 for sp, st in status['spiders'].items():
 if sp.name == self._spider_name:
 return st

 def getChild(self, name, txrequest):
 return EngineStatusResource(name, self._crawler)

Example of web service client

scrapy-ws.py script

#!/usr/bin/env python
"""
Example script to control a Scrapy server using its JSON-RPC web service.

It only provides a reduced functionality as its main purpose is to illustrate
how to write a web service client. Feel free to improve or write you own.

Also, keep in mind that the JSON-RPC API is not stable. The recommended way for
controlling a Scrapy server is through the execution queue (see the "queue"
command).

"""

import sys, optparse, urllib
from urlparse import urljoin

from scrapy.utils.jsonrpc import jsonrpc_client_call, JsonRpcError
from scrapy.utils.py26 import json

def get_commands():
 return {
 'help': cmd_help,
 'run': cmd_run,
 'stop': cmd_stop,
 'list-available': cmd_list_available,
 'list-running': cmd_list_running,
 'list-resources': cmd_list_resources,
 'get-global-stats': cmd_get_global_stats,
 'get-spider-stats': cmd_get_spider_stats,
 }

def cmd_help(args, opts):
 """help - list available commands"""
 print "Available commands:"
 for _, func in sorted(get_commands().items()):
 print " ", func.__doc__

def cmd_run(args, opts):
 """run <spider_name> - schedule spider for running"""
 jsonrpc_call(opts, 'crawler/queue', 'append_spider_name', args[0])

def cmd_stop(args, opts):
 """stop <spider> - stop a running spider"""
 jsonrpc_call(opts, 'crawler/engine', 'close_spider', args[0])

def cmd_list_running(args, opts):
 """list-running - list running spiders"""
 for x in json_get(opts, 'crawler/engine/open_spiders'):
 print x

def cmd_list_available(args, opts):
 """list-available - list name of available spiders"""
 for x in jsonrpc_call(opts, 'crawler/spiders', 'list'):
 print x

def cmd_list_resources(args, opts):
 """list-resources - list available web service resources"""
 for x in json_get(opts, '')['resources']:
 print x

def cmd_get_spider_stats(args, opts):
 """get-spider-stats <spider> - get stats of a running spider"""
 stats = jsonrpc_call(opts, 'stats', 'get_stats', args[0])
 for name, value in stats.items():
 print "%-40s %s" % (name, value)

def cmd_get_global_stats(args, opts):
 """get-global-stats - get global stats"""
 stats = jsonrpc_call(opts, 'stats', 'get_stats')
 for name, value in stats.items():
 print "%-40s %s" % (name, value)

def get_wsurl(opts, path):
 return urljoin("http://%s:%s/"% (opts.host, opts.port), path)

def jsonrpc_call(opts, path, method, *args, **kwargs):
 url = get_wsurl(opts, path)
 return jsonrpc_client_call(url, method, *args, **kwargs)

def json_get(opts, path):
 url = get_wsurl(opts, path)
 return json.loads(urllib.urlopen(url).read())

def parse_opts():
 usage = "%prog [options] <command> [arg] ..."
 description = "Scrapy web service control script. Use '%prog help' " \
 "to see the list of available commands."
 op = optparse.OptionParser(usage=usage, description=description)
 op.add_option("-H", dest="host", default="localhost", \
 help="Scrapy host to connect to")
 op.add_option("-P", dest="port", type="int", default=6080, \
 help="Scrapy port to connect to")
 opts, args = op.parse_args()
 if not args:
 op.print_help()
 sys.exit(2)
 cmdname, cmdargs, opts = args[0], args[1:], opts
 commands = get_commands()
 if cmdname not in commands:
 sys.stderr.write("Unknown command: %s\n\n" % cmdname)
 cmd_help(None, None)
 sys.exit(1)
 return commands[cmdname], cmdargs, opts

def main():
 cmd, args, opts = parse_opts()
 try:
 cmd(args, opts)
 except IndexError:
 print cmd.__doc__
 except JsonRpcError, e:
 print str(e)
 if e.data:
 print "Server Traceback below:"
 print e.data

if __name__ == '__main__':
 main()

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Frequently Asked Questions

How does Scrapy compare to BeautifulSoul or lxml?

BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/] and lxml [http://codespeak.net/lxml/] are libraries for parsing HTML and XML. Scrapy is
an application framework for writing web spiders that crawl web sites and
extract data from them.

Scrapy provides a built-in mechanism for extracting data (called
selectors) but you can easily use BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/]
(or lxml [http://codespeak.net/lxml/]) instead, if you feel more comfortable working with them. After
all, they’re just parsing libraries which can be imported and used from any
Python code.

In other words, comparing BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/] (or lxml [http://codespeak.net/lxml/]) to Scrapy is like
comparing jinja2 [http://jinja.pocoo.org/2/] to Django [http://www.djangoproject.com].

What Python versions does Scrapy support?

Scrapy runs in Python 2.5, 2.6 and 2.7. But it’s recommended you use Python 2.6
or above, since the Python 2.5 standard library has a few bugs in their URL
handling libraries. Some of these Python 2.5 bugs not only affect Scrapy but
any user code, such as spiders. You can see a list of Python 2.5 bugs that
affect Scrapy [http://dev.scrapy.org/query?status=accepted&status=assigned&status=new&status=reopened&order=priority&keywords=~py25-bug] in the issue tracker.

Does Scrapy work with Python 3.0?

No, and there are no plans to port Scrapy to Python 3.0 yet. At the moment,
Scrapy works with Python 2.5, 2.6 and 2.7.

See also

What Python versions does Scrapy support?.

Did Scrapy “steal” X from Django?

Probably, but we don’t like that word. We think Django [http://www.djangoproject.com] is a great open source
project and an example to follow, so we’ve used it as an inspiration for
Scrapy.

We believe that, if something is already done well, there’s no need to reinvent
it. This concept, besides being one of the foundations for open source and free
software, not only applies to software but also to documentation, procedures,
policies, etc. So, instead of going through each problem ourselves, we choose
to copy ideas from those projects that have already solved them properly, and
focus on the real problems we need to solve.

We’d be proud if Scrapy serves as an inspiration for other projects. Feel free
to steal from us!

Does Scrapy work with HTTP proxies?

Yes. Support for HTTP proxies is provided (since Scrapy 0.8) through the HTTP
Proxy downloader middleware. See
HttpProxyMiddleware.

Scrapy crashes with: ImportError: No module named win32api

You need to install pywin32 [http://sourceforge.net/projects/pywin32/] because of this Twisted bug [http://twistedmatrix.com/trac/ticket/3707].

How can I simulate a user login in my spider?

See Using FormRequest.from_response() to simulate a user login.

Can I crawl in breadth-first order instead of depth-first order?

Yes, there’s a setting for that: SCHEDULER_ORDER.

My Scrapy crawler has memory leaks. What can I do?

See Debugging memory leaks.

Also, Python has a builtin memory leak issue which is described in
Leaks without leaks.

How can I make Scrapy consume less memory?

See previous question.

Can I use Basic HTTP Authentication in my spiders?

Yes, see HttpAuthMiddleware.

Why does Scrapy download pages in English instead of my native language?

Try changing the default Accept-Language [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4] request header by overriding the
DEFAULT_REQUEST_HEADERS setting.

Where can I find some example code using Scrapy?

Scrapy comes with a built-in, fully functional project to scrape the Google
Directory [http://www.google.com/dirhp]. You can find it in the examples/googledir [http://dev.scrapy.org/browser/examples/googledir] directory of the
Scrapy distribution.

Also, there’s a site for sharing code snippets (spiders, middlewares,
extensions) called Scrapy snippets [http://snippets.scrapy.org/].

Finally, you can find some example code for performing not-so-trivial tasks in
the Scrapy Recipes [http://dev.scrapy.org/wiki/ScrapyRecipes] wiki page.

Can I run a spider without creating a project?

Yes. You can use the runspider command. For example, if you have a
spider written in a my_spider.py file you can run it with:

scrapy runspider my_spider.py

See runspider command for more info.

I get “Filtered offsite request” messages. How can I fix them?

Those messages (logged with DEBUG level) don’t necessarily mean there is a
problem, so you may not need to fix them.

Those message are thrown by the Offsite Spider Middleware, which is a spider
middleware (enabled by default) whose purpose is to filter out requests to
domains outside the ones covered by the spider.

For more info see:
OffsiteMiddleware.

What is the recommended way to deploy a Scrapy crawler in production?

See Scrapy Service (scrapyd).

Can I use JSON for large exports?

It’ll depend on how large your output is. See this warning in JsonItemExporter
documentation.

Can I return (Twisted) deferreds from signal handlers?

Some signals support returning deferreds from their handlers, others don’t. See
the Built-in signals reference to know which ones.

What does the response status code 999 means?

999 is a custom reponse status code used by Yahoo sites to throttle requests.
Try slowing down the crawling speed by using a download delay of 2 (or
higher) in your spider:

class MySpider(CrawlSpider):

 name = 'myspider'

 DOWNLOAD_DELAY = 2

 # [... rest of the spider code ...]

Or by setting a global download delay in your project with the
DOWNLOAD_DELAY setting.

Can I call pdb.set_trace() from my spiders to debug them?

Yes, but you can also use the Scrapy shell which allows you too quickly analyze
(and even modify) the response being processed by your spider, which is, quite
often, more useful than plain old pdb.set_trace().

For more info see Invoking the shell from spiders to inspect responses.

Simplest way to dump all my scraped items into a JSON/CSV/XML file?

To dump into a JSON file:

scrapy crawl myspider --set FEED_URI=items.json --set FEED_FORMAT=json

To dump into a CSV file:

scrapy crawl myspider --set FEED_URI=items.csv --set FEED_FORMAT=csv

To dump into a XML file:

scrapy crawl myspider --set FEED_URI=items.xml --set FEED_FORMAT=xml

For more information see Feed exports

What’s this huge cryptic __VIEWSTATE parameter used in some forms?

The __VIEWSTATE parameter is used in sites built with ASP.NET/VB.NET. For
more info on how it works see this page [http://search.cpan.org/~ecarroll/HTML-TreeBuilderX-ASP_NET-0.09/lib/HTML/TreeBuilderX/ASP_NET.pm]. Also, here’s an example spider [http://github.com/AmbientLighter/rpn-fas/blob/master/fas/spiders/rnp.py]
which scrapes one of these sites.

What’s the best way to parse big XML/CSV data feeds?

Parsing big feeds with XPath selectors can be problematic since they need to
build the DOM of the entire feed in memory, and this can be quite slow and
consume a lot of memory.

In order to avoid parsing all the entire feed at once in memory, you can use
the functions xmliter and csviter from scrapy.utils.iterators
module. In fact, this is what the feed spiders (see Spiders) use
under the cover.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Using Firefox for scraping

Here is a list of tips and advice on using Firefox for scraping, along with a
list of useful Firefox add-ons to ease the scraping process.

Caveats with inspecting the live browser DOM

Since Firefox add-ons operate on a live browser DOM, what you’ll actually see
when inspecting the page source is not the original HTML, but a modified one
after applying some browser clean up and executing Javascript code. Firefox,
in particular, is known for adding <tbody> elements to tables. Scrapy, on
the other hand, does not modify the original page HTML, so you won’t be able to
extract any data if you use <tbody in your XPath expressions.

Therefore, you should keep in mind the following things when working with
Firefox and XPath:

	Disable Firefox Javascript while inspecting the DOM looking for XPaths to be
used in Scrapy

	Never use full XPath paths, use relative and clever ones based on attributes
(such as id, class, width, etc) or any identifying features like
contains(@href, 'image').

	Never include <tbody> elements in your XPath expressions unless you
really know what you’re doing

Useful Firefox add-ons for scraping

Firebug

Firebug [http://getfirebug.com] is a widely known tool among web developers and it’s also very
useful for scraping. In particular, its Inspect Element [http://www.youtube.com/watch?v=-pT_pDe54aA] feature comes very
handy when you need to construct the XPaths for extracting data because it
allows you to view the HTML code of each page element while moving your mouse
over it.

See Using Firebug for scraping for a detailed guide on how to use Firebug with
Scrapy.

XPather

XPather [https://addons.mozilla.org/firefox/addon/1192] allows you to test XPath expressions directly on the pages.

XPath Checker

XPath Checker [https://addons.mozilla.org/firefox/addon/1095] is another Firefox add-on for testing XPaths on your pages.

Tamper Data

Tamper Data [http://addons.mozilla.org/firefox/addon/966] is a Firefox add-on which allows you to view and modify the HTTP
request headers sent by Firefox. Firebug also allows to view HTTP headers, but
not to modify them.

Firecookie

Firecookie [https://addons.mozilla.org/firefox/addon/6683] makes it easier to view and manage cookies. You can use this
extension to create a new cookie, delete existing cookies, see a list of cookies
for the current site, manage cookies permissions and a lot more.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Using Firebug for scraping

Introduction

This document explains how to use Firebug [http://getfirebug.com] (a Firefox add-on) to make the
scraping process easier and more fun. For other useful Firefox add-ons see
Useful Firefox add-ons for scraping. There are some caveats with using Firefox add-ons
to inspect pages, see Caveats with inspecting the live browser DOM.

In this example, we’ll show how to use Firebug [http://getfirebug.com] to scrape data from the
Google Directory [http://directory.google.com/], which contains the same data as the Open Directory
Project [http://www.dmoz.org] used in the tutorial but with a different
face.

Firebug comes with a very useful feature called Inspect Element [http://www.youtube.com/watch?v=-pT_pDe54aA] which allows
you to inspect the HTML code of the different page elements just by hovering
your mouse over them. Otherwise you would have to search for the tags manually
through the HTML body which can be a very tedious task.

In the following screenshot you can see the Inspect Element [http://www.youtube.com/watch?v=-pT_pDe54aA] tool in action.

[image: Inspecting elements with Firebug]
At first sight, we can see that the directory is divided in categories, which
are also divided in subcategories.

However, it seems that there are more subcategories than the ones being shown
in this page, so we’ll keep looking:

[image: Inspecting elements with Firebug]
As expected, the subcategories contain links to other subcategories, and also
links to actual websites, which is the purpose of the directory.

Getting links to follow

By looking at the category URLs we can see they share a pattern:

http://directory.google.com/Category/Subcategory/Another_Subcategory

Once we know that, we are able to construct a regular expression to follow
those links. For example, the following one:

directory\.google\.com/[A-Z][a-zA-Z_/]+$

So, based on that regular expression we can create the first crawling rule:

Rule(SgmlLinkExtractor(allow='directory.google.com/[A-Z][a-zA-Z_/]+$',),
 'parse_category',
 follow=True,
),

The Rule object instructs
CrawlSpider based spiders how to follow the
category links. parse_category will be a method of the spider which will
process and extract data from those pages.

This is how the spider would look so far:

from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
from scrapy.contrib.spiders import CrawlSpider, Rule

class GoogleDirectorySpider(CrawlSpider):
 name = 'directory.google.com'
 allowed_domains = ['directory.google.com']
 start_urls = ['http://directory.google.com/']

 rules = (
 Rule(SgmlLinkExtractor(allow='directory\.google\.com/[A-Z][a-zA-Z_/]+$'),
 'parse_category', follow=True,
),
)

 def parse_category(self, response):
 # write the category page data extraction code here
 pass

Extracting the data

Now we’re going to write the code to extract data from those pages.

With the help of Firebug, we’ll take a look at some page containing links to
websites (say http://directory.google.com/Top/Arts/Awards/) and find out how we can
extract those links using XPath selectors. We’ll also
use the Scrapy shell to test those XPath’s and make sure
they work as we expect.

[image: Inspecting elements with Firebug]
As you can see, the page markup is not very descriptive: the elements don’t
contain id, class or any attribute that clearly identifies them, so
we’‘ll use the ranking bars as a reference point to select the data to extract
when we construct our XPaths.

After using FireBug, we can see that each link is inside a td tag, which is
itself inside a tr tag that also contains the link’s ranking bar (in
another td).

So we can select the ranking bar, then find its parent (the tr), and then
finally, the link’s td (which contains the data we want to scrape).

This results in the following XPath:

//td[descendant::a[contains(@href, "#pagerank")]]/following-sibling::td//a

It’s important to use the Scrapy shell to test these
complex XPath expressions and make sure they work as expected.

Basically, that expression will look for the ranking bar’s td element, and
then select any td element who has a descendant a element whose
href attribute contains the string #pagerank“

Of course, this is not the only XPath, and maybe not the simpler one to select
that data. Another approach could be, for example, to find any font tags
that have that grey colour of the links,

Finally, we can write our parse_category() method:

def parse_category(self, response):
 hxs = HtmlXPathSelector(response)

 # The path to website links in directory page
 links = hxs.select('//td[descendant::a[contains(@href, "#pagerank")]]/following-sibling::td/font')

 for link in links:
 item = DirectoryItem()
 item['name'] = link.select('a/text()').extract()
 item['url'] = link.select('a/@href').extract()
 item['description'] = link.select('font[2]/text()').extract()
 yield item

Be aware that you may find some elements which appear in Firebug but
not in the original HTML, such as the typical case of <tbody>
elements.

or tags which Therefer in page HTML
sources may on Firebug inspects the live DOM

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Debugging memory leaks

In Scrapy, objects such as Requests, Responses and Items have a finite
lifetime: they are created, used for a while, and finally destroyed.

From all those objects, the Request is probably the one with the longest
lifetime, as it stays waiting in the Scheduler queue until it’s time to process
it. For more info see Architecture overview.

As these Scrapy objects have a (rather long) lifetime, there is always the risk
of accumulating them in memory without releasing them properly and thus causing
what is known as a “memory leak”.

To help debugging memory leaks, Scrapy provides a built-in mechanism for
tracking objects references called trackref,
and you can also use a third-party library called Guppy for more advanced memory debugging (see below for more
info). Both mechanisms must be used from the Telnet Console.

Common causes of memory leaks

It happens quite often (sometimes by accident, sometimes on purpose) that the
Scrapy developer passes objects referenced in Requests (for example, using the
meta attribute or the request callback function)
and that effectively bounds the lifetime of those referenced objects to the
lifetime of the Request. This is, by far, the most common cause of memory leaks
in Scrapy projects, and a quite difficult one to debug for newcomers.

In big projects, the spiders are typically written by different people and some
of those spiders could be “leaking” and thus affecting the rest of the other
(well-written) spiders when they get to run concurrently, which, in turn,
affects the whole crawling process.

At the same time, it’s hard to avoid the reasons that cause these leaks
without restricting the power of the framework, so we have decided not to
restrict the functionally but provide useful tools for debugging these leaks,
which quite often consist in an answer to the question: which spider is leaking?.

The leak could also come from a custom middleware, pipeline or extension that
you have written, if you are not releasing the (previously allocated) resources
properly. For example, if you’re allocating resources on
spider_opened but not releasing them on spider_closed.

Debugging memory leaks with trackref

trackref is a module provided by Scrapy to debug the most common cases of
memory leaks. It basically tracks the references to all live Requests,
Responses, Item and Selector objects.

To activate the trackref module, enable the TRACK_REFS setting.
It only imposes a minor performance impact, so it should be OK to use it, even
in production environments.

Once you have trackref enabled, you can enter the telnet console and inspect
how many objects (of the classes mentioned above) are currently alive using the
prefs() function which is an alias to the
print_live_refs() function:

telnet localhost 6023

>>> prefs()
Live References

ExampleSpider 1 oldest: 15s ago
HtmlResponse 10 oldest: 1s ago
XPathSelector 2 oldest: 0s ago
FormRequest 878 oldest: 7s ago

As you can see, that report also shows the “age” of the oldest object in each
class.

If you do have leaks, chances are you can figure out which spider is leaking by
looking at the oldest request or response. You can get the oldest object of
each class using the get_oldest() function like
this (from the telnet console).

Which objects are tracked?

The objects tracked by trackrefs are all from these classes (and all its
subclasses):

	scrapy.http.Request

	scrapy.http.Response

	scrapy.item.Item

	scrapy.selector.XPathSelector

	scrapy.spider.BaseSpider

	scrapy.selector.document.Libxml2Document

A real example

Let’s see a concrete example of an hypothetical case of memory leaks.

Suppose we have some spider with a line similar to this one:

return Request("http://www.somenastyspider.com/product.php?pid=%d" % product_id,
 callback=self.parse, meta={referer: response}")

That line is passing a response reference inside a request which effectively
ties the response lifetime to the requests’ one, and that would definitely
cause memory leaks.

Let’s see how we can discover which one is the nasty spider (without knowing it
a-priori, of course) by using the trackref tool.

After the crawler is running for a few minutes and we notice its memory usage
has grown a lot, we can enter its telnet console and check the live
references:

>>> prefs()
Live References

SomenastySpider 1 oldest: 15s ago
HtmlResponse 3890 oldest: 265s ago
XPathSelector 2 oldest: 0s ago
Request 3878 oldest: 250s ago

The fact that there are so many live responses (and that they’re so old) is
definitely suspicious, as responses should have a relatively short lifetime
compared to Requests. So let’s check the oldest response:

>>> from scrapy.utils.trackref import get_oldest
>>> r = get_oldest('HtmlResponse')
>>> r.url
'http://www.somenastyspider.com/product.php?pid=123'

There it is. By looking at the URL of the oldest response we can see it belongs
to the somenastyspider.com spider. We can now go and check the code of that
spider to discover the nasty line that is generating the leaks (passing
response references inside requests).

If you want to iterate over all objects, instead of getting the oldest one, you
can use the iter_all() function:

>>> from scrapy.utils.trackref import iter_all
>>> [r.url for r in iter_all('HtmlResponse')]
['http://www.somenastyspider.com/product.php?pid=123',
 'http://www.somenastyspider.com/product.php?pid=584',
...

Too many spiders?

If your project has too many spiders, the output of prefs() can be
difficult to read. For this reason, that function has a ignore argument
which can be used to ignore a particular class (and all its subclases). For
example, using:

>>> from scrapy.spider import BaseSpider
>>> prefs(ignore=BaseSpider)

Won’t show any live references to spiders.

scrapy.utils.trackref module

Here are the functions available in the trackref module.

	
class scrapy.utils.trackref.object_ref

	Inherit from this class (instead of object) if you want to track live
instances with the trackref module.

	
scrapy.utils.trackref.print_live_refs(class_name, ignore=NoneType)

	Print a report of live references, grouped by class name.

	Parameters:	ignore (class or classes tuple) – if given, all objects from the specified class (or tuple of
classes) will be ignored.

	
scrapy.utils.trackref.get_oldest(class_name)

	Return the oldest object alive with the given class name, or None if
none is found. Use print_live_refs() first to get a list of all
tracked live objects per class name.

	
scrapy.utils.trackref.iter_all(class_name)

	Return an iterator over all objects alive with the given class name, or
None if none is found. Use print_live_refs() first to get a list
of all tracked live objects per class name.

Debugging memory leaks with Guppy

trackref provides a very convenient mechanism for tracking down memory
leaks, but it only keeps track of the objects that are more likely to cause
memory leaks (Requests, Responses, Items, and Selectors). However, there are
other cases where the memory leaks could come from other (more or less obscure)
objects. If this is your case, and you can’t find your leaks using trackref,
you still have another resource: the Guppy library [http://pypi.python.org/pypi/guppy].

If you use setuptools, you can install Guppy with the following command:

easy_install guppy

The telnet console also comes with a built-in shortcut (hpy) for accessing
Guppy heap objects. Here’s an example to view all Python objects available in
the heap using Guppy:

>>> x = hpy.heap()
>>> x.bytype
Partition of a set of 297033 objects. Total size = 52587824 bytes.
 Index Count % Size % Cumulative % Type
 0 22307 8 16423880 31 16423880 31 dict
 1 122285 41 12441544 24 28865424 55 str
 2 68346 23 5966696 11 34832120 66 tuple
 3 227 0 5836528 11 40668648 77 unicode
 4 2461 1 2222272 4 42890920 82 type
 5 16870 6 2024400 4 44915320 85 function
 6 13949 5 1673880 3 46589200 89 types.CodeType
 7 13422 5 1653104 3 48242304 92 list
 8 3735 1 1173680 2 49415984 94 _sre.SRE_Pattern
 9 1209 0 456936 1 49872920 95 scrapy.http.headers.Headers
<1676 more rows. Type e.g. '_.more' to view.>

You can see that most space is used by dicts. Then, if you want to see from
which attribute those dicts are referenced, you could do:

>>> x.bytype[0].byvia
Partition of a set of 22307 objects. Total size = 16423880 bytes.
 Index Count % Size % Cumulative % Referred Via:
 0 10982 49 9416336 57 9416336 57 '.__dict__'
 1 1820 8 2681504 16 12097840 74 '.__dict__', '.func_globals'
 2 3097 14 1122904 7 13220744 80
 3 990 4 277200 2 13497944 82 "['cookies']"
 4 987 4 276360 2 13774304 84 "['cache']"
 5 985 4 275800 2 14050104 86 "['meta']"
 6 897 4 251160 2 14301264 87 '[2]'
 7 1 0 196888 1 14498152 88 "['moduleDict']", "['modules']"
 8 672 3 188160 1 14686312 89 "['cb_kwargs']"
 9 27 0 155016 1 14841328 90 '[1]'
<333 more rows. Type e.g. '_.more' to view.>

As you can see, the Guppy module is very powerful but also requires some deep
knowledge about Python internals. For more info about Guppy, refer to the
Guppy documentation [http://guppy-pe.sourceforge.net/].

Leaks without leaks

Sometimes, you may notice that the memory usage of your Scrapy process will
only increase, but never decrease. Unfortunately, this could happen even
though neither Scrapy nor your project are leaking memory. This is due to a
(not so well) known problem of Python, which may not return released memory to
the operating system in some cases. For more information on this issue see:

	Python Memory Management [http://evanjones.ca/python-memory.html]

	Python Memory Management Part 2 [http://evanjones.ca/python-memory-part2.html]

	Python Memory Management Part 3 [http://evanjones.ca/python-memory-part3.html]

The improvements proposed by Evan Jones, which are detailed in this paper [http://evanjones.ca/memoryallocator/],
got merged in Python 2.5, but this only reduces the problem, it doesn’t fix it
completely. To quote the paper:

Unfortunately, this patch can only free an arena if there are no more
objects allocated in it anymore. This means that fragmentation is a large
issue. An application could have many megabytes of free memory, scattered
throughout all the arenas, but it will be unable to free any of it. This is
a problem experienced by all memory allocators. The only way to solve it is
to move to a compacting garbage collector, which is able to move objects in
memory. This would require significant changes to the Python interpreter.

This problem will be fixed in future Scrapy releases, where we plan to adopt a
new process model and run spiders in a pool of recyclable sub-processes.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Downloading Item Images

Scrapy provides an item pipeline for downloading
images attached to a particular item, for example, when you scrape products and
also want to download their images locally.

This pipeline, called the Images Pipeline and implemented in the
ImagesPipeline class, provides a convenient way for
downloading and storing images locally with some additional features:

	Convert all downloaded images to a common format (JPG) and mode (RGB)

	Avoid re-downloading images which were downloaded recently

	Thumbnail generation

	Check images width/height to make sure they meet a minimum constraint

This pipeline also keeps an internal queue of those images which are currently
being scheduled for download, and connects those items that arrive containing
the same image, to that queue. This avoids downloading the same image more than
once when it’s shared by several items.

The Python Imaging Library [http://www.pythonware.com/products/pil/] is used for thumbnailing and normalizing images
to JPEG/RGB format, so you need to install that library in order to use the
images pipeline.

Using the Images Pipeline

The typical workflow, when using the ImagesPipeline goes like
this:

	In a Spider, you scrape an item and put the URLs of its images into a
image_urls field.

	The item is returned from the spider and goes to the item pipeline.

	When the item reaches the ImagesPipeline, the URLs in the
image_urls field are scheduled for download using the standard
Scrapy scheduler and downloader (which means the scheduler and downloader
middlewares are reused), but with a higher priority, processing them before other
pages are scraped. The item remains “locked” at that particular pipeline stage
until the images have finish downloading (or fail for some reason).

	When the images are downloaded another field (images) will be populated
with the results. This field will contain a list of dicts with information
about the images downloaded, such as the downloaded path, the original
scraped url (taken from the image_urls field) , and the image checksum.
The images in the list of the images field will retain the same order of
the original image_urls field. If some image failed downloading, an
error will be logged and the image won’t be present in the images field.

Usage example

In order to use the image pipeline you just need to enable it and define an item with the image_urls and
images fields:

from scrapy.item import Item

class MyItem(Item):

 # ... other item fields ...
 image_urls = Field()
 images = Field()

If you need something more complex and want to override the custom images
pipeline behaviour, see Implementing your custom Images Pipeline.

Enabling your Images Pipeline

To enable your images pipeline you must first add it to your project
ITEM_PIPELINES setting:

ITEM_PIPELINES = ['scrapy.contrib.pipeline.images.ImagesPipeline']

And set the IMAGES_STORE setting to a valid directory that will be
used for storing the downloaded images. Otherwise the pipeline will remain
disabled, even if you include it in the ITEM_PIPELINES setting.

For example:

IMAGES_STORE = '/path/to/valid/dir'

Images Storage

File system is currently the only officially supported storage, but there is
also (undocumented) support for Amazon S3 [https://s3.amazonaws.com/].

File system storage

The images are stored in files (one per image), using a SHA1 hash [http://en.wikipedia.org/wiki/SHA_hash_functions] of their
URLs for the file names.

For example, the following image URL:

http://www.example.com/image.jpg

Whose SHA1 hash is:

3afec3b4765f8f0a07b78f98c07b83f013567a0a

Will be downloaded and stored in the following file:

<IMAGES_STORE>/full/3afec3b4765f8f0a07b78f98c07b83f013567a0a.jpg

Where:

	<IMAGES_STORE> is the directory defined in IMAGES_STORE setting

	full is a sub-directory to separate full images from thumbnails (if
used). For more info see Thumbnail generation.

Additional features

Image expiration

The Image Pipeline avoids downloading images that were downloaded recently. To
adjust this retention delay use the IMAGES_EXPIRES setting, which
specifies the delay in number of days:

90 days of delay for image expiration
IMAGES_EXPIRES = 90

Thumbnail generation

The Images Pipeline can automatically create thumbnails of the downloaded
images.

In order use this feature, you must set IMAGES_THUMBS to a dictionary
where the keys are the thumbnail names and the values are their dimensions.

For example:

IMAGES_THUMBS = {
 'small': (50, 50),
 'big': (270, 270),
}

When you use this feature, the Images Pipeline will create thumbnails of the
each specified size with this format:

<IMAGES_STORE>/thumbs/<size_name>/<image_id>.jpg

Where:

	<size_name> is the one specified in the IMAGES_THUMBS
dictionary keys (small, big, etc)

	<image_id> is the SHA1 hash [http://en.wikipedia.org/wiki/SHA_hash_functions] of the image url

Example of image files stored using small and big thumbnail names:

<IMAGES_STORE>/full/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg
<IMAGES_STORE>/thumbs/small/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg
<IMAGES_STORE>/thumbs/big/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg

The first one is the full image, as downloaded from the site.

Filtering out small images

You can drop images which are too small, by specifying the minimum allowed size
in the IMAGES_MIN_HEIGHT and IMAGES_MIN_WIDTH settings.

For example:

IMAGES_MIN_HEIGHT = 110
IMAGES_MIN_WIDTH = 110

Note: these size constraints don’t affect thumbnail generation at all.

By default, there are no size constraints, so all images are processed.

Implementing your custom Images Pipeline

Here are the methods that you should override in your custom Images Pipeline:

	
class scrapy.contrib.pipeline.images.ImagesPipeline

	
	
get_media_requests(item, info)

	As seen on the workflow, the pipeline will get the URLs of the images to
download from the item. In order to do this, you must override the
get_media_requests() method and return a Request for each
image URL:

def get_media_requests(self, item, info):
 for image_url in item['image_urls']:
 yield Request(image_url)

Those requests will be processed by the pipeline and, when they have finished
downloading, the results will be sent to the
item_completed() method, as a list of 2-element tuples.
Each tuple will contain (success, image_info_or_failure) where:

	success is a boolean which is True if the image was downloaded
successfully or False if it failed for some reason

	image_info_or_error is a dict containing the following keys (if success
is True) or a Twisted Failure [http://twistedmatrix.com/documents/8.2.0/api/twisted.python.failure.Failure.html] if there was a problem.
	url - the url where the image was downloaded from. This is the url of
the request returned from the get_media_requests()
method.

	path - the path (relative to IMAGES_STORE) where the image
was stored

	checksum - a MD5 hash [http://en.wikipedia.org/wiki/MD5] of the image contents

The list of tuples received by item_completed() is
guaranteed to retain the same order of the requests returned from the
get_media_requests() method.

Here’s a typical value of the results argument:

[(True,
 {'checksum': '2b00042f7481c7b056c4b410d28f33cf',
 'path': 'full/7d97e98f8af710c7e7fe703abc8f639e0ee507c4.jpg',
 'url': 'http://www.example.com/images/product1.jpg'}),
 (True,
 {'checksum': 'b9628c4ab9b595f72f280b90c4fd093d',
 'path': 'full/1ca5879492b8fd606df1964ea3c1e2f4520f076f.jpg',
 'url': 'http://www.example.com/images/product2.jpg'}),
 (False,
 Failure(...))]

By default the get_media_requests() method returns None which
means there are no images to download for the item.

	
item_completed(results, items, info)

	The ImagesPipeline.item_completed() method called when all image
requests for a single item have completed (either finshed downloading, or
failed for some reason).

The item_completed() method must return the
output that will be sent to subsequent item pipeline stages, so you must
return (or drop) the item, as you would in any pipeline.

Here is an example of the item_completed() method where we
store the downloaded image paths (passed in results) in the image_paths
item field, and we drop the item if it doesn’t contain any images:

from scrapy.exceptions import DropItem

def item_completed(self, results, item, info):
 image_paths = [x['path'] for ok, x in results if ok]
 if not image_paths:
 raise DropItem("Item contains no images")
 item['image_paths'] = image_paths
 return item

By default, the item_completed() method returns the item.

Custom Images pipeline example

Here is a full example of the Images Pipeline whose methods are examplified
above:

from scrapy.contrib.pipeline.images import ImagesPipeline
from scrapy.exceptions import DropItem
from scrapy.http import Request

class MyImagesPipeline(ImagesPipeline):

 def get_media_requests(self, item, info):
 for image_url in item['image_urls']:
 yield Request(image_url)

 def item_completed(self, results, item, info):
 image_paths = [x['path'] for ok, x in results if ok]
 if not image_paths:
 raise DropItem("Item contains no images")
 item['image_paths'] = image_paths
 return item

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Ubuntu packages

New in version 0.10.

Insophia [http://insophia.com/] publishes apt-gettable packages which are generally fresher than
those in Ubuntu, and more stable too since they’re built continously from
Scrapy Mercurial repositories [http://hg.scrapy.org/] (stable & development) and so they contain the
latest bug fixes.

To use the packages, just add the following line to your
/etc/apt/sources.list, and then run aptitude update and aptitude
install scrapy-0.12:

deb http://archive.scrapy.org/ubuntu DISTRO main

Replacing DISTRO with the name of your Ubuntu release, which you can get
with command:

lsb_release -cs

Supported Ubuntu releases are: karmic, lucid, maverick, natty.

For Ubuntu Maverick (10.10):

deb http://archive.scrapy.org/ubuntu maverick main

For Ubuntu Lucid (10.04):

deb http://archive.scrapy.org/ubuntu lucid main

For Ubuntu Karmic (9.10):

deb http://archive.scrapy.org/ubuntu karmic main

Warning

Please note that these packages are updated frequently, and so if
you find you can’t download the packages, try updating your apt package
lists first, e.g., with apt-get update or aptitude update.

The public GPG key used to sign these packages can be imported into you APT
keyring as follows:

curl -s http://archive.scrapy.org/ubuntu/archive.key | sudo apt-key add -

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Scrapy Service (scrapyd)

New in version 0.10.

Scrapy comes with a built-in service, called “Scrapyd”, which allows you to
deploy (aka. upload) your projects and control their spiders using a JSON web
service.

Projects and versions

Scrapyd can manage multiple projects and each project can have multiple
versions uploaded, but only the latest one will be used for launching new
spiders.

A common (and useful) convention to use for the version name is the revision
number of the version control tool you’re using to track your Scrapy project
code. For example: r23. The versions are not compared alphabetically but
using a smarter algorithm (the same distutils [http://docs.python.org/library/distutils.html] uses) so r10 compares
greater to r9, for example.

How Scrapyd works

Scrapyd is an application (typically run as a daemon) that continually polls
for spiders that need to run.

When a spider needs to run, a process is started to crawl the spider:

scrapy crawl myspider

Scrapyd also runs multiple processes in parallel, allocating them in a fixed
number of slots given by the max_proc and max_proc_per_cpu options,
starting as many processes as possible to handle the load.

In addition to dispatching and managing processes, Scrapyd provides a
JSON web service to upload new project versions
(as eggs) and schedule spiders. This feature is optional and can be disabled if
you want to implement your own custom Scrapyd. The components are pluggable and
can be changed, if you’re familiar with the Twisted Application Framework [http://twistedmatrix.com/documents/current/core/howto/application.html]
which Scrapyd is implemented in.

Starting from 0.11, Scrapyd also provides a minimal web interface.

Starting Scrapyd

Scrapyd is implemented using the standard Twisted Application Framework [http://twistedmatrix.com/documents/current/core/howto/application.html]. To
start the service, use the extras/scrapyd.tac file provided in the Scrapy
distribution, like this:

twistd -ny extras/scrapyd.tac

That should get your Scrapyd started.

Or, if you want to start Scrapyd from inside a Scrapy project you can use the
server command, like this:

scrapy server

Installing Scrapyd

How to deploy Scrapyd on your servers depends on the platform your’re using.
Scrapy comes with Ubuntu packages for Scrapyd ready for deploying it as a
system service, to ease the installation and administration, but you can create
packages for other distribution or operating systems (including Windows). If
you do so, and want to contribute them, send a message to
scrapy-developers@googlegroups.com and say hi. The community will appreciate
it.

Installing Scrapyd in Ubuntu

When deploying Scrapyd, it’s very useful to have a version already packaged for
your system. For this reason, Scrapyd comes with Ubuntu packages ready to use
in your Ubuntu servers.

So, if you plan to deploy Scrapyd on a Ubuntu server, just add the Ubuntu
repositories as described in Ubuntu packages and then run:

aptitude install scrapyd-0.12

This will install Scrapyd in your Ubuntu server creating a scrapy user
which Scrapyd will run as. It will also create some directories and files that
are listed below:

/etc/scrapyd

Scrapyd configuration files. See Scrapyd Configuration file.

/var/log/scrapyd/scrapyd.log

Scrapyd main log file.

/var/log/scrapyd/scrapyd.out

The standard output captured from Scrapyd process and any
sub-process spawned from it.

/var/log/scrapyd/scrapyd.err

The standard error captured from Scrapyd and any sub-process spawned
from it. Remember to check this file if you’re having problems, as the errors
may not get logged to the scrapyd.log file.

/var/log/scrapyd/project

Besides the main service log file, Scrapyd stores one log file per crawling
process in:

/var/log/scrapyd/PROJECT/SPIDER/ID.log

Where ID is a unique id for the run.

/var/lib/scrapyd/

Directory used to store data files (uploaded eggs and spider queues).

Scrapyd Configuration file

Scrapyd searches for configuration files in the following locations, and parses
them in order with the latest ones taking more priority:

	/etc/scrapyd/scrapyd.conf (Unix)

	c:\scrapyd\scrapyd.conf (Windows)

	/etc/scrapyd/conf.d/* (in alphabetical order, Unix)

	scrapyd.conf

The configuration file supports the following options (see default values in
the example).

http_port

The TCP port where the HTTP JSON API will listen. Defaults to 6800.

max_proc

The maximum number of concurrent Scrapy process that will be started. If unset
or 0 it will use the number of cpus available in the system mulitplied by
the value in max_proc_per_cpu option. Defaults to 0.

max_proc_per_cpu

The maximum number of concurrent Scrapy process that will be started per cpu.
Defaults to 4.

debug

Whether debug mode is enabled. Defaults to off. When debug mode is enabled
the full Python traceback will be returned (as plain text responses) when there
is an error processing a JSON API call.

eggs_dir

The directory where the project eggs will be stored.

dbs_dir

The directory where the project databases will be stored (this includes the
spider queues).

logs_dir

The directory where the Scrapy processes logs will be stored.

logs_to_keep

The number of logs to keep per spider. Defaults to 5.

runner

The module that will be used for launching sub-processes. You can customize the
Scrapy processes launched from Scrapyd by using your own module.

application

A function that returns the (Twisted) Application object to use. This can be
used if you want to extend Scrapyd by adding and removing your own components
and services.

For more info see Twisted Application Framework [http://twistedmatrix.com/documents/current/core/howto/application.html]

Example configuration file

Here is an example configuration file with all the defaults:

[scrapyd]
eggs_dir = eggs
logs_dir = logs
logs_to_keep = 5
dbs_dir = dbs
max_proc = 0
max_proc_per_cpu = 4
http_port = 6800
debug = off
runner = scrapyd.runner
application = scrapyd.app.application

Deploying your project

Deploying your project into a Scrapyd server typically involves two steps:

	building a Python egg [http://peak.telecommunity.com/DevCenter/PythonEggs] of your project. This is called “eggifying” your
project. You’ll need to install setuptools [http://pypi.python.org/pypi/setuptools] for this. See
Egg caveats below.

	uploading the egg to the Scrapyd server

The simplest way to deploy your project is by using the deploy
command, which automates the process of building the egg uploading it using the
Scrapyd HTTP JSON API.

The deploy command supports multiple targets (Scrapyd servers that
can host your project) and each target supports multiple projects.

Each time you deploy a new version of a project, you can name it for later
reference.

Show and define targets

To see all available targets type:

scrapy deploy -l

This will return a list of available targets and their URLs. For example:

scrapyd http://localhost:6800/

You can define targets by adding them to your project’s scrapy.cfg file,
or any other supported location like ~/.scrapy.cfg, /etc/scrapy.cfg,
or c:\scrapy\scrapy.cfg (in Windows).

Here’s an example of defining a new target scrapyd2 with restricted access
through HTTP basic authentication:

[deploy:scrapyd2]
url = http://scrapyd.mydomain.com/api/scrapyd/
username = john
password = secret

Note

The deploy command also supports netrc for getting the
credentials.

Now, if you type scrapy deploy -l you’ll see:

scrapyd http://localhost:6800/
scrapyd2 http://scrapyd.mydomain.com/api/scrapyd/

See available projects

To see all available projets in a specific target use:

scrapy deploy -L scrapyd

It would return something like this:

project1
project2

Deploying a project

Finally, to deploy your project use:

scrapy deploy scrapyd -p project1

This will eggify your project and upload it to the target, printing the JSON
response returned from the Scrapyd server. If you have a setup.py file in
your project, that one will be used. Otherwise a setup.py file will be
created automatically (based on a simple template) that you can edit later.

After running that command you will see something like this, meaning your
project was uploaded successfully:

Deploying myproject-1287453519 to http://localhost:6800/addversion.json
Server response (200):
{"status": "ok", "spiders": ["spider1", "spider2"]}

By default scrapy deploy uses the current timestamp for generating the
project version, as you can see in the output above. However, you can pass a
custom version with the --version option:

scrapy deploy scrapyd -p project1 --version 54

Also, if you use Mercurial for tracking your project source code, you can use
HG for the version which will be replaced by the current Mercurial
revision, for example r382:

scrapy deploy scrapyd -p project1 --version HG

Support for other version discovery sources may be added in the future.

Finally, if you don’t want to specify the target, project and version every
time you run scrapy deploy you can define the defaults in the
scrapy.cfg file. For example:

[deploy]
url = http://scrapyd.mydomain.com/api/scrapyd/
username = john
password = secret
project = project1
version = HG

This way, you can deploy your project just by using:

scrapy deploy

Local settings

Sometimes, while your working on your projects, you may want to override your
certain settings with certain local settings that shouldn’t be deployed to
Scrapyd, but only used locally to develop and debug your spiders.

One way to deal with this is to have a local_settings.py at the root of
your project (where the scrapy.cfg file resides) and add these lines to the
end of your project settings:

try:
 from local_settings import *
except ImportError:
 pass

scrapy deploy won’t deploy anything outside the project module so the
local_settings.py file won’t be deployed.

Here’s the directory structure, to illustrate:

scrapy.cfg
local_settings.py
myproject/
 __init__.py
 settings.py
 spiders/
 ...

Egg caveats

There are some things to keep in mind when building eggs of your Scrapy
project:

	make sure no local development settings are included in the egg when you
build it. The find_packages function may be picking up your custom
settings. In most cases you want to upload the egg with the default project
settings.

	you shouldn’t use __file__ in your project code as it doesn’t play well
with eggs. Consider using pkgutil.get_data() [http://docs.python.org/library/pkgutil.html#pkgutil.get_data] instead.

	be careful when writing to disk in your project (in any spider, extension or
middleware) as Scrapyd will probably run with a different user which may not
have write access to certain directories. If you can, avoid writing to disk
and always use tempfile [http://docs.python.org/library/tempfile.html] for temporary files.

Scheduling a spider run

To schedule a spider run:

$ curl http://localhost:6800/schedule.json -d project=myproject -d spider=spider2
{"status": "ok"}

For more resources see: JSON API reference for more available resources.

Web Interface

New in version 0.11.

Scrapyd comes with a minimal web interface (for monitoring running processes
and accessing logs) which can be accessed at http://localhost:6800/

JSON API reference

The following section describes the available resources in Scrapyd JSON API.

addversion.json

Add a version to a project, creating the project if it doesn’t exist.

	Supported Request Methods: POST

	Parameters:
	project (string, required) - the project name

	version (string, required) - the project version

	egg (file, required) - a Python egg containing the project’s code

Example request:

$ curl http://localhost:6800/addversion.json -F project=myproject -F version=r23 -F egg=@myproject.egg

Example reponse:

{"status": "ok", "spiders": 3}

schedule.json

Schedule a spider run.

	Supported Request Methods: POST

	Parameters:
* project (string, required) - the project name
* spider (string, required) - the spider name
* any other parameter is passed as spider argument

Example request:

$ curl http://localhost:6800/schedule.json -d project=myproject -d spider=somespider

Example response:

{"status": "ok"}

listprojects.json

Get the list of projects uploaded to this Scrapy server.

	Supported Request Methods: GET

	Parameters: none

Example request:

$ curl http://localhost:6800/listprojects.json

Example response:

{"status": "ok", "projects": ["myproject", "otherproject"]}

listversions.json

Get the list of versions available for some project. The versions are returned
in order, the last one is the currently used version.

	Supported Request Methods: GET

	Parameters:
* project (string, required) - the project name

Example request:

$ curl http://localhost:6800/listversions.json?project=myproject

Example response:

{"status": "ok", "versions": ["r99", "r156"]}

listspiders.json

Get the list of spiders available in the last version of some project.

	Supported Request Methods: GET

	Parameters:
* project (string, required) - the project name

Example request:

$ curl http://localhost:6800/listspiders.json?project=myproject

Example response:

{"status": "ok", "spiders": ["spider1", "spider2", "spider3"]}

delversion.json

Delete a project version. If there are no more versions available for a given
project, that project will be deleted too.

	Supported Request Methods: POST

	Parameters:
* project (string, required) - the project name
* version (string, required) - the project version

Example request:

$ curl http://localhost:6800/delversion.json -d project=myproject -d version=r99

Example response:

{"status": "ok"}

delproject.json

Delete a project and all its uploaded versions.

	Supported Request Methods: POST

	Parameters:
* project (string, required) - the project name

Example request:

$ curl http://localhost:6800/delproject.json -d project=myproject

Example response:

{"status": "ok"}

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Architecture overview

This document describes the architecture of Scrapy and how its components
interact.

Overview

The following diagram shows an overview of the Scrapy architecture with its
components and an outline of the data flow that takes place inside the system
(shown by the green arrows). A brief description of the components is included
below with links for more detailed information about them. The data flow is
also described below.

[image: Scrapy architecture]

Components

Scrapy Engine

The engine is responsible for controlling the data flow between all components
of the system, and triggering events when certain actions occur. See the Data
Flow section below for more details.

Scheduler

The Scheduler receives requests from the engine and enqueues them for feeding
them later (also to the engine) when the engine requests them.

Downloader

The Downloader is responsible for fetching web pages and feeding them to the
engine which, in turn, feeds them to the spiders.

Spiders

Spiders are custom classes written by Scrapy users to parse responses and
extract items (aka scraped items) from them or additional URLs (requests) to
follow. Each spider is able to handle a specific domain (or group of domains).
For more information see Spiders.

Item Pipeline

The Item Pipeline is responsible for processing the items once they have been
extracted (or scraped) by the spiders. Typical tasks include cleansing,
validation and persistence (like storing the item in a database). For more
information see Item Pipeline.

Downloader middlewares

Downloader middlewares are specific hooks that sit between the Engine and the
Downloader and process requests when they pass from the Engine to the
Downloader, and responses that pass from Downloader to the Engine. They provide
a convenient mechanism for extending Scrapy functionality by plugging custom
code. For more information see Downloader Middleware.

Spider middlewares

Spider middlewares are specific hooks that sit between the Engine and the
Spiders and are able to process spider input (responses) and output (items and
requests). They provide a convenient mechanism for extending Scrapy
functionality by plugging custom code. For more information see
Spider Middleware.

Scheduler middlewares

Scheduler middlewares are specific hooks that sit between the Engine and the
Scheduler and process requests when they pass from the Engine to the Scheduler
and vice-versa. They provide a convenient mechanism for extending Scrapy
functionality by plugging custom code.

Data flow

The data flow in Scrapy is controlled by the Engine, and goes like this:

	The Engine opens a domain, locates the Spider that handles that domain, and
asks the spider for the first URLs to crawl.

	The Engine gets the first URLs to crawl from the Spider and schedules them
in the Scheduler, as Requests.

	The Engine asks the Scheduler for the next URLs to crawl.

	The Scheduler returns the next URLs to crawl to the Engine and the Engine
sends them to the Downloader, passing through the Downloader Middleware
(request direction).

	Once the page finishes downloading the Downloader generates a Response (with
that page) and sends it to the Engine, passing through the Downloader
Middleware (response direction).

	The Engine receives the Response from the Downloader and sends it to the
Spider for processing, passing through the Spider Middleware (input direction).

	The Spider processes the Response and returns scraped Items and new Requests
(to follow) to the Engine.

	The Engine sends scraped Items (returned by the Spider) to the Item Pipeline
and Requests (returned by spider) to the Scheduler

	The process repeats (from step 2) until there are no more requests from the
Scheduler, and the Engine closes the domain.

Event-driven networking

Scrapy is written with Twisted [http://twistedmatrix.com/trac/], a popular event-driven networking framework
for Python. Thus, it’s implemented using a non-blocking (aka asynchronous) code
for concurrency.

For more information about asynchronous programming and Twisted see these
links:

	Asynchronous Programming with Twisted [http://twistedmatrix.com/projects/core/documentation/howto/async.html]

	Twisted - hello, asynchronous programming [http://jessenoller.com/2009/02/11/twisted-hello-asynchronous-programming/]

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Downloader Middleware

The downloader middleware is a framework of hooks into Scrapy’s
request/response processing. It’s a light, low-level system for globally
altering Scrapy’s requests and responses.

Activating a downloader middleware

To activate a downloader middleware component, add it to the
DOWNLOADER_MIDDLEWARES setting, which is a dict whose keys are the
middleware class paths and their values are the middleware orders.

Here’s an example:

DOWNLOADER_MIDDLEWARES = {
 'myproject.middlewares.CustomDownloaderMiddleware': 543,
}

The DOWNLOADER_MIDDLEWARES setting is merged with the
DOWNLOADER_MIDDLEWARES_BASE setting defined in Scrapy (and not meant to
be overridden) and then sorted by order to get the final sorted list of enabled
middlewares: the first middleware is the one closer to the engine and the last
is the one closer to the downloader.

To decide which order to assign to your middleware see the
DOWNLOADER_MIDDLEWARES_BASE setting and pick a value according to
where you want to insert the middleware. The order does matter because each
middleware performs a different action and your middleware could depend on some
previous (or subsequent) middleware being applied.

If you want to disable a built-in middleware (the ones defined in
DOWNLOADER_MIDDLEWARES_BASE and enabled by default) you must define it
in your project’s DOWNLOADER_MIDDLEWARES setting and assign None
as its value. For example, if you want to disable the off-site middleware:

DOWNLOADER_MIDDLEWARES = {
 'myproject.middlewares.CustomDownloaderMiddleware': 543,
 'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': None,
}

Finally, keep in mind that some middlewares may need to be enabled through a
particular setting. See each middleware documentation for more info.

Writing your own downloader middleware

Writing your own downloader middleware is easy. Each middleware component is a
single Python class that defines one or more of the following methods:

	
class scrapy.contrib.downloadermiddleware.DownloaderMiddleware

	
	
process_request(request, spider)

	This method is called for each request that goes through the download
middleware.

process_request() should return either None, a
Response object, or a Request
object.

If it returns None, Scrapy will continue processing this request, executing all
other middlewares until, finally, the appropriate downloader handler is called
the request performed (and its response downloaded).

If it returns a Response object, Scrapy won’t bother
calling ANY other request or exception middleware, or the appropriate
download function; it’ll return that Response. Response middleware is
always called on every Response.

If it returns a Request object, the returned request will be
rescheduled (in the Scheduler) to be downloaded in the future. The callback of
the original request will always be called. If the new request has a callback
it will be called with the response downloaded, and the output of that callback
will then be passed to the original callback. If the new request doesn’t have a
callback, the response downloaded will be just passed to the original request
callback.

If it returns an IgnoreRequest exception, the
entire request will be dropped completely and its callback never called.

	Parameters:	
	request (Request object) – the request being processed

	spider (BaseSpider object) – the spider for which this request is intended

	
process_response(request, response, spider)

	process_response() should return a Response
object or raise a IgnoreRequest exception.

If it returns a Response (it could be the same given
response, or a brand-new one), that response will continue to be processed
with the process_response() of the next middleware in the pipeline.

If it returns an IgnoreRequest exception, the
response will be dropped completely and its callback never called.

	Parameters:	
	request (is a Request object) – the request that originated the response

	reponse – the response being processed

	spider (BaseSpider object) – the spider for which this response is intended

	
process_exception(request, exception, spider)

	Scrapy calls process_exception() when a download handler
or a process_request() (from a downloader middleware) raises an
exception.

process_exception() should return either None,
Response or Request object.

If it returns None, Scrapy will continue processing this exception,
executing any other exception middleware, until no middleware is left and
the default exception handling kicks in.

If it returns a Response object, the response middleware
kicks in, and won’t bother calling any other exception middleware.

If it returns a Request object, the returned request is
used to instruct an immediate redirection.
The original request won’t finish until the redirected
request is completed. This stops the process_exception()
middleware the same as returning Response would do.

	Parameters:	
	request (is a Request object) – the request that generated the exception

	exception (an Exception object) – the raised exception

	spider (BaseSpider object) – the spider for which this request is intended

Built-in downloader middleware reference

This page describes all downloader middleware components that come with
Scrapy. For information on how to use them and how to write your own downloader
middleware, see the downloader middleware usage guide.

For a list of the components enabled by default (and their orders) see the
DOWNLOADER_MIDDLEWARES_BASE setting.

CookiesMiddleware

	
class scrapy.contrib.downloadermiddleware.cookies.CookiesMiddleware

	This middleware enables working with sites that need cookies.

DefaultHeadersMiddleware

	
class scrapy.contrib.downloadermiddleware.defaultheaders.DefaultHeadersMiddleware

	This middleware sets all default requests headers specified in the
DEFAULT_REQUEST_HEADERS setting.

DownloadTimeoutMiddleware

	
class scrapy.contrib.downloadermiddleware.downloadtimeout.DownloadTimeoutMiddleware

	This middleware sets the download timeout for requests specified in the
DOWNLOAD_TIMEOUT setting.

HttpAuthMiddleware

	
class scrapy.contrib.downloadermiddleware.httpauth.HttpAuthMiddleware

	This middleware authenticates all requests generated from certain spiders
using Basic access authentication [http://en.wikipedia.org/wiki/Basic_access_authentication] (aka. HTTP auth).

To enable HTTP authentication from certain spiders, set the http_user
and http_pass attributes of those spiders.

Example:

class SomeIntranetSiteSpider(CrawlSpider):

 http_user = 'someuser'
 http_pass = 'somepass'
 name = 'intranet.example.com'

 # .. rest of the spider code omitted ...

HttpCacheMiddleware

	
class scrapy.contrib.downloadermiddleware.httpcache.HttpCacheMiddleware

	This middleware provides low-level cache to all HTTP requests and responses.
Every request and its corresponding response are cached. When the same
request is seen again, the response is returned without transferring
anything from the Internet.

The HTTP cache is useful for testing spiders faster (without having to wait for
downloads every time) and for trying your spider offline, when an Internet
connection is not available.

File system storage

By default, the HttpCacheMiddleware uses a file system storage with the following structure:

Each request/response pair is stored in a different directory containing
the following files:

	request_body - the plain request body

	request_headers - the request headers (in raw HTTP format)

	response_body - the plain response body

	response_headers - the request headers (in raw HTTP format)

	meta - some metadata of this cache resource in Python repr() format
(grep-friendly format)

	pickled_meta - the same metadata in meta but pickled for more
efficient deserialization

The directory name is made from the request fingerprint (see
scrapy.utils.request.fingerprint), and one level of subdirectories is
used to avoid creating too many files into the same directory (which is
inefficient in many file systems). An example directory could be:

/path/to/cache/dir/example.com/72/72811f648e718090f041317756c03adb0ada46c7

The cache storage backend can be changed with the HTTPCACHE_STORAGE
setting, but no other backend is provided with Scrapy yet.

Settings

The HttpCacheMiddleware can be configured through the following
settings:

HTTPCACHE_ENABLED

New in version 0.11.

Default: False

Whether the HTTP cache will be enabled.

Changed in version 0.11: Before 0.11, HTTPCACHE_DIR was used to enable cache.

HTTPCACHE_EXPIRATION_SECS

Default: 0

Expiration time for cached requests, in seconds.

Cached requests older than this time will be re-downloaded. If zero, cached
requests will never expire.

Changed in version 0.11: Before 0.11, zero meant cached requests always expire.

HTTPCACHE_DIR

Default: 'httpcache'

The directory to use for storing the (low-level) HTTP cache. If empty, the HTTP
cache will be disabled. If a relative path is given, is taken relative to the
project data dir. For more info see: Default structure of Scrapy projects.

HTTPCACHE_IGNORE_HTTP_CODES

New in version 0.10.

Default: []

Don’t cache response with these HTTP codes.

HTTPCACHE_IGNORE_MISSING

Default: False

If enabled, requests not found in the cache will be ignored instead of downloaded.

HTTPCACHE_IGNORE_SCHEMES

New in version 0.10.

Default: ['file']

Don’t cache responses with these URI schemes.

HTTPCACHE_STORAGE

Default: 'scrapy.contrib.downloadermiddleware.httpcache.FilesystemCacheStorage'

The class which implements the cache storage backend.

HttpCompressionMiddleware

	
class scrapy.contrib.downloadermiddleware.httpcompression.HttpCompressionMiddleware

	This middleware allows compressed (gzip, deflate) traffic to be
sent/received from web sites.

HttpProxyMiddleware

New in version 0.8.

	
class scrapy.contrib.downloadermiddleware.httpproxy.HttpProxyMiddleware

	This middleware sets the HTTP proxy to use for requests, by setting the
proxy meta value to Request objects.

Like the Python standard library modules urllib [http://docs.python.org/library/urllib.html] and urllib2 [http://docs.python.org/library/urllib2.html], it obeys
the following enviroment variables:

	http_proxy

	https_proxy

	no_proxy

RedirectMiddleware

	
class scrapy.contrib.downloadermiddleware.redirect.RedirectMiddleware

	This middleware handles redirection of requests based on response status and
meta-refresh html tag.

The urls which the request goes through (while being redirected) can be found
in the redirect_urls Request.meta key.

The RedirectMiddleware can be configured through the following
settings (see the settings documentation for more info):

	REDIRECT_MAX_METAREFRESH_DELAY - Maximum meta-refresh delay that a page is allowed to have for redirection.

	REDIRECT_MAX_TIMES - Maximum number of redirects to perform on a request.

	REDIRECT_PRIORITY_ADJUST - Adjusts the redirected request priority by this amount.

If Request.meta contains the
dont_redirect key, the request will be ignored by this middleware.

RetryMiddleware

	
class scrapy.contrib.downloadermiddleware.retry.RetryMiddleware

	A middlware to retry failed requests that are potentially caused by
temporary problems such as a connection timeout or HTTP 500 error.

Failed pages are collected on the scraping process and rescheduled at the
end, once the spider has finished crawling all regular (non failed) pages.
Once there are no more failed pages to retry, this middleware sends a signal
(retry_complete), so other extensions could connect to that signal.

The RetryMiddleware can be configured through the following
settings (see the settings documentation for more info):

	RETRY_TIMES - how many times to retry a failed page

	RETRY_HTTP_CODES - which HTTP response codes to retry

About HTTP errors to consider:

You may want to remove 400 from RETRY_HTTP_CODES, if you stick to the
HTTP protocol. It’s included by default because it’s a common code used
to indicate server overload, which would be something we want to retry.

If Request.meta contains the dont_retry
key, the request will be ignored by this middleware.

RobotsTxtMiddleware

	
class scrapy.contrib.downloadermiddleware.robotstxt.RobotsTxtMiddleware

	This middleware filters out requests forbidden by the robots.txt exclusion
standard.

To make sure Scrapy respects robots.txt make sure the middleware is enabled
and the ROBOTSTXT_OBEY setting is enabled.

Warning

Keep in mind that, if you crawl using multiple concurrent
requests per domain, Scrapy could still download some forbidden pages
if they were requested before the robots.txt file was downloaded. This
is a known limitation of the current robots.txt middleware and will
be fixed in the future.

DownloaderStats

	
class scrapy.contrib.downloadermiddleware.stats.DownloaderStats

	Middleware that stores stats of all requests, responses and exceptions that
pass through it.

To use this middleware you must enable the DOWNLOADER_STATS
setting.

UserAgentMiddleware

	
class scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware

	Middleware that allows spiders to override the default user agent.

In order for a spider to override the default user agent, its user_agent
attribute must be set.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Spider Middleware

The spider middleware is a framework of hooks into Scrapy’s spider processing
mechanism where you can plug custom functionality to process the requests that
are sent to Spiders for processing and to process the responses
and items that are generated from spiders.

Activating a spider middleware

To activate a spider middleware component, add it to the
SPIDER_MIDDLEWARES setting, which is a dict whose keys are the
middleware class path and their values are the middleware orders.

Here’s an example:

SPIDER_MIDDLEWARES = {
 'myproject.middlewares.CustomSpiderMiddleware': 543,
}

The SPIDER_MIDDLEWARES setting is merged with the
SPIDER_MIDDLEWARES_BASE setting defined in Scrapy (and not meant to
be overridden) and then sorted by order to get the final sorted list of enabled
middlewares: the first middleware is the one closer to the engine and the last
is the one closer to the spider.

To decide which order to assign to your middleware see the
SPIDER_MIDDLEWARES_BASE setting and pick a value according to where
you want to insert the middleware. The order does matter because each
middleware performs a different action and your middleware could depend on some
previous (or subsequent) middleware being applied.

If you want to disable a builtin middleware (the ones defined in
SPIDER_MIDDLEWARES_BASE, and enabled by default) you must define it
in your project SPIDER_MIDDLEWARES setting and assign None as its
value. For example, if you want to disable the off-site middleware:

SPIDER_MIDDLEWARES = {
 'myproject.middlewares.CustomSpiderMiddleware': 543,
 'scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware': None,
}

Finally, keep in mind that some middlewares may need to be enabled through a
particular setting. See each middleware documentation for more info.

Writing your own spider middleware

Writing your own spider middleware is easy. Each middleware component is a
single Python class that defines one or more of the following methods:

	
class scrapy.contrib.spidermiddleware.SpiderMiddleware

	
	
process_spider_input(response, spider)

	This method is called for each response that goes through the spider
middleware and into the spider, for processing.

process_spider_input() should return None or raise and
exception.

If it returns None, Scrapy will continue processing this response,
executing all other middlewares until, finally, the response is handled
to the spider for processing.

If it raises an exception, Scrapy won’t bother calling any other spider
middleware process_spider_input() and will call the request
errback. The output of the errback is chained back in the other
direction for process_spider_output() to process it, or
process_spider_exception() if it raised an exception.

	Parameters:	
	reponse – the response being processed

	spider (BaseSpider object) – the spider for which this response is intended

	
process_spider_output(response, result, spider)

	This method is called with the results returned from the Spider, after
it has processed the response.

process_spider_output() must return an iterable of
Request or Item objects.

	Parameters:	
	response (class:~scrapy.http.Response object) – the response which generated this output from the
spider

	result (an iterable of Request or
Item objects) – the result returned by the spider

	spider (BaseSpider object) – the spider whose result is being processed

	
process_spider_exception(response, exception, spider)

	This method is called when when a spider or :meth:process_spider_input:
method (from other spider middleware) raises an exception.

process_spider_exception() should return either None or an
iterable of Response or
Item objects.

If it returns None, Scrapy will continue processing this exception,
executing any other process_spider_exception() in the following
middleware components, until no middleware components are left and the
exception reaches the engine (where it’s logged and discarded).

If it returns an iterable the process_spider_output() pipeline
kicks in, and no other process_spider_exception() will be called.

	Parameters:	
	response (Response object) – the response being processed when the exception was
raised

	exception (Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception] object) – the exception raised

	spider (scrapy.spider.BaseSpider object) – the spider which raised the exception

Built-in spider middleware reference

This page describes all spider middleware components that come with Scrapy. For
information on how to use them and how to write your own spider middleware, see
the spider middleware usage guide.

For a list of the components enabled by default (and their orders) see the
SPIDER_MIDDLEWARES_BASE setting.

DepthMiddleware

	
class scrapy.contrib.spidermiddleware.depth.DepthMiddleware

	DepthMiddleware is a scrape middleware used for tracking the depth of each
Request inside the site being scraped. It can be used to limit the maximum
depth to scrape or things like that.

The DepthMiddleware can be configured through the following
settings (see the settings documentation for more info):

	DEPTH_LIMIT - The maximum depth that will be allowed to
crawl for any site. If zero, no limit will be imposed.

	DEPTH_STATS - Whether to collect depth stats.

HttpErrorMiddleware

	
class scrapy.contrib.spidermiddleware.httperror.HttpErrorMiddleware

	Filter out unsuccessful (erroneous) HTTP responses so that spiders don’t
have to deal with them, which (most of the time) imposes an overhead,
consumes more resources, and makes the spider logic more complex.

According to the HTTP standard [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html], successful responses are those whose
status codes are in the 200-300 range.

If you still want to process response codes outside that range, you can
specify which response codes the spider is able to handle using the
handle_httpstatus_list spider attribute.

For example, if you want your spider to handle 404 responses you can do
this:

class MySpider(CrawlSpider):
 handle_httpstatus_list = [404]

The handle_httpstatus_list key of Request.meta can also be used to specify which response codes to
allow on a per-request basis.

Keep in mind, however, that it’s usually a bad idea to handle non-200
responses, unless you really know what you’re doing.

For more information see: HTTP Status Code Definitions [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html].

OffsiteMiddleware

	
class scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware

	Filters out Requests for URLs outside the domains covered by the spider.

This middleware filters out every request whose host names aren’t in the
spider’s allowed_domains attribute.

When your spider returns a request for a domain not belonging to those
covered by the spider, this middleware will log a debug message similar to
this one:

DEBUG: Filtered offsite request to 'www.othersite.com': <GET http://www.othersite.com/some/page.html>

To avoid filling the log with too much noise, it will only print one of
these messages for each new domain filtered. So, for example, if another
request for www.othersite.com is filtered, no log message will be
printed. But if a request for someothersite.com is filtered, a message
will be printed (but only for the first request filtred).

If the spider doesn’t define an
allowed_domains attribute, or the
attribute is empty, the offsite middleware will allow all requests.

RefererMiddleware

	
class scrapy.contrib.spidermiddleware.referer.RefererMiddleware

	Populates Request referer field, based on the Response which originated it.

UrlLengthMiddleware

	
class scrapy.contrib.spidermiddleware.urllength.UrlLengthMiddleware

	Filters out requests with URLs longer than URLLENGTH_LIMIT

The UrlLengthMiddleware can be configured through the following
settings (see the settings documentation for more info):

	URLLENGTH_LIMIT - The maximum URL length to allow for crawled URLs.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Extensions

The extensions framework provides a mechanism for inserting your own
custom functionality into Scrapy.

Extensions are just regular classes that are instantiated at Scrapy startup,
when extensions are initialized.

Extension settings

Extensions use the Scrapy settings to manage their
settings, just like any other Scrapy code.

It is customary for extensions to prefix their settings with their own name, to
avoid collision with existing (and future) extensions. For example, an
hypothetic extension to handle Google Sitemaps [http://en.wikipedia.org/wiki/Sitemaps] would use settings like
GOOGLESITEMAP_ENABLED, GOOGLESITEMAP_DEPTH, and so on.

Loading & activating extensions

Extensions are loaded and activated at startup by instantiating a single
instance of the extension class. Therefore, all the extension initialization
code must be performed in the class constructor (__init__ method).

To make an extension available, add it to the EXTENSIONS setting in
your Scrapy settings. In EXTENSIONS, each extension is represented
by a string: the full Python path to the extension’s class name. For example:

EXTENSIONS = {
 'scrapy.contrib.corestats.CoreStats': 500,
 'scrapy.webservice.WebService': 500,
 'scrapy.telnet.TelnetConsole': 500,
}

As you can see, the EXTENSIONS setting is a dict where the keys are
the extension paths, and their values are the orders, which define the
extension loading order. Extensions orders are not as important as middleware
orders though, and they are typically irrelevant, ie. it doesn’t matter in
which order the extensions are loaded because they don’t depend on each other
[1].

However, this feature can be exploited if you need to add an extension which
depends on other extensions already loaded.

[1] This is is why the EXTENSIONS_BASE setting in Scrapy (which
contains all built-in extensions enabled by default) defines all the extensions
with the same order (500).

Available, enabled and disabled extensions

Not all available extensions will be enabled. Some of them usually depend on a
particular setting. For example, the HTTP Cache extension is available by default
but disabled unless the HTTPCACHE_ENABLED setting is set.

Accessing enabled extensions

Even though it’s not usually needed, you can access extension objects through
the Extension Manager which is populated when extensions are
loaded. For example, to access the WebService extension:

from scrapy.project import extensions
webservice_extension = extensions.enabled['WebService']

Writing your own extension

Writing your own extension is easy. Each extension is a single Python class
which doesn’t need to implement any particular method.

All extension initialization code must be performed in the class constructor
(__init__ method). If that method raises the
NotConfigured exception, the extension will be
disabled. Otherwise, the extension will be enabled.

Let’s take a look at the following example extension which just logs a message
every time a domain/spider is opened and closed:

from scrapy.xlib.pydispatch import dispatcher
from scrapy import signals

class SpiderOpenCloseLogging(object):

 def __init__(self):
 dispatcher.connect(self.spider_opened, signal=signals.spider_opened)
 dispatcher.connect(self.spider_closed, signal=signals.spider_closed)

 def spider_opened(self, spider):
 log.msg("opened spider %s" % spider.name)

 def spider_closed(self, spider):
 log.msg("closed spider %s" % spider.name)

Extension Manager

The Extension Manager is responsible for loading and keeping track of installed
extensions and it’s configured through the EXTENSIONS setting which
contains a dictionary of all available extensions and their order similar to
how you configure the downloader middlewares.

	
class scrapy.extension.ExtensionManager

	The Extension Manager is a singleton object, which is instantiated at module
loading time and can be accessed like this:

from scrapy.project import extensions

	
loaded

	A boolean which is True if extensions are already loaded or False if
they’re not.

	
enabled

	A dict with the enabled extensions. The keys are the extension class names,
and the values are the extension objects. Example:

>>> from scrapy.project import extensions
>>> extensions.load()
>>> print extensions.enabled
{'CoreStats': <scrapy.contrib.corestats.CoreStats object at 0x9e272ac>,
 'WebService': <scrapy.management.telnet.TelnetConsole instance at 0xa05670c>,
...

	
disabled

	A dict with the disabled extensions. The keys are the extension class names,
and the values are the extension class paths (because objects are never
instantiated for disabled extensions). Example:

>>> from scrapy.project import extensions
>>> extensions.load()
>>> print extensions.disabled
{'MemoryDebugger': 'scrapy.contrib.memdebug.MemoryDebugger',
 'MyExtension': 'myproject.extensions.MyExtension',
...

	
load()

	Load the available extensions configured in the EXTENSIONS
setting. On a standard run, this method is usually called by the Execution
Manager, but you may need to call it explicitly if you’re dealing with
code outside Scrapy.

	
reload()

	Reload the available extensions. See load().

Built-in extensions reference

General purpose extensions

Core Stats extension

	
class scrapy.contrib.corestats.corestats.CoreStats

	

Enable the collection of core statistics, provided the stats collection is
enabled (see Stats Collection).

Web service extension

	
class scrapy.webservice.WebService

	

See topics-webservice.

Telnet console extension

	
class scrapy.telnet.TelnetConsole

	

Provides a telnet console for getting into a Python interpreter inside the
currently running Scrapy process, which can be very useful for debugging.

The telnet console must be enabled by the TELNETCONSOLE_ENABLED
setting, and the server will listen in the port specified in
TELNETCONSOLE_PORT.

Memory usage extension

	
class scrapy.contrib.memusage.MemoryUsage

	

Note

This extension does not work in Windows.

Allows monitoring the memory used by a Scrapy process and:

1, send a notification e-mail when it exceeds a certain value
2. terminate the Scrapy process when it exceeds a certain value

The notification e-mails can be triggered when a certain warning value is
reached (MEMUSAGE_WARNING_MB) and when the maximum value is reached
(MEMUSAGE_LIMIT_MB) which will also cause the Scrapy process to be
terminated.

This extension is enabled by the MEMUSAGE_ENABLED setting and
can be configured with the following settings:

	MEMUSAGE_LIMIT_MB

	MEMUSAGE_WARNING_MB

	MEMUSAGE_NOTIFY_MAIL

	MEMUSAGE_REPORT

Memory debugger extension

	
class scrapy.contrib.memdebug.MemoryDebugger

	

A memory debugger which collects some info about objects uncollected by the
garbage collector and libxml2 memory leaks. To enable this extension, turn on
the MEMDEBUG_ENABLED setting. The report will be printed to standard
output. If the MEMDEBUG_NOTIFY setting contains a list of e-mails the
report will also be sent to those addresses.

Close spider extension

	
class scrapy.contrib.closespider.CloseSpider

	

Closes a spider automatically when some conditions are met, using a specific
closing reason for each condition.

The conditions for closing a spider can be configured through the following
settings:

	CLOSESPIDER_TIMEOUT

	CLOSESPIDER_ITEMPASSED

	CLOSESPIDER_PAGECOUNT

	CLOSESPIDER_ERRORCOUNT

CLOSESPIDER_TIMEOUT

Default: 0

An integer which specifies a number of seconds. If the spider remains open for
more than that number of second, it will be automatically closed with the
reason closespider_timeout. If zero (or non set), spiders won’t be closed by
timeout.

CLOSESPIDER_ITEMPASSED

Default: 0

An integer which specifies a number of items. If the spider scrapes more than
that amount if items and those items are passed by the item pipeline, the
spider will be closed with the reason closespider_itempassed. If zero (or
non set), spiders won’t be closed by number of passed items.

CLOSESPIDER_PAGECOUNT

New in version 0.11.

Default: 0

An integer which specifies the maximum number of responses to crawl. If the spider
crawls more than that, the spider will be closed with the reason
closespider_pagecount. If zero (or non set), spiders won’t be closed by
number of crawled responses.

CLOSESPIDER_ERRORCOUNT

New in version 0.11.

Default: 0

An integer which specifies the maximum number of errors to receive before
closing the spider. If the spider generates more than that number of errors,
it will be closed with the reason closespider_errorcount. If zero (or non
set), spiders won’t be closed by number of errors.

StatsMailer extension

	
class scrapy.contrib.statsmailer.StatsMailer

	

This simple extension can be used to send a notification e-mail every time a
domain has finished scraping, including the Scrapy stats collected. The email
will be sent to all recipients specified in the STATSMAILER_RCPTS
setting.

Debugging extensions

Stack trace dump extension

	
class scrapy.contrib.debug.StackTraceDump

	

Dumps the stack trace of a runnning Scrapy process when a SIGUSR2 [http://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2] signal is
received. After the stack trace is dumped, the Scrapy process continues running
normally.

The stack trace is sent to standard output.

This extension only works on POSIX-compliant platforms (ie. not Windows).

Debugger extension

	
class scrapy.contrib.debug.Debugger

	

Invokes a Python debugger [http://docs.python.org/library/pdb.html] inside a running Scrapy process when a SIGUSR2 [http://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2]
signal is received. After the debugger is exited, the Scrapy process continues
running normally.

For more info see Debugging in Python.

This extension only works on POSIX-compliant platforms (ie. not Windows).

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Requests and Responses

Scrapy uses Request and Response objects for crawling web
sites.

Typically, Request objects are generated in the spiders and pass
across the system until they reach the Downloader, which executes the request
and returns a Response object which travels back to the spider that
issued the request.

Both Request and Response classes have subclasses which add
functionality not required in the base classes. These are described
below in Request subclasses and
Response subclasses.

Request objects

	
class scrapy.http.Request(url[, method='GET', body, headers, cookies, meta, encoding='utf-8', priority=0.0, dont_filter=False, callback, errback])

	A Request object represents an HTTP request, which is usually
generated in the Spider and executed by the Downloader, and thus generating
a Response.

	Parameters:	
	url (string) – the URL of this request

	method (string) – the HTTP method of this request. Defaults to 'GET'.

	meta (dict) – the initial values for the Request.meta attribute. If
given, the dict passed in this parameter will be shallow copied.

	body (str or unicode) – the request body. If a unicode is passed, then it’s encoded to
str using the encoding passed (which defaults to utf-8). If
body is not given,, an empty string is stored. Regardless of the
type of this argument, the final value stored will be a str` (never
unicode or None).

	headers (dict) – the headers of this request. The dict values can be strings
(for single valued headers) or lists (for multi-valued headers).

	cookies (dict) – the request cookies. Example:

request_with_cookies = Request(url="http://www.example.com",
 cookies={currency: 'USD', country: 'UY'})

When some site returns cookies (in a response) those are stored in the
cookies for that domain and will be sent again in future requests. That’s
the typical behaviour of any regular web browser. However, if, for some
reason, you want to avoid merging with existing cookies you can instruct
Scrapy to do so by setting the dont_merge_cookies key in the
Request.meta.

Example of request without merging cookies:

request_with_cookies = Request(url="http://www.example.com",
 cookies={currency: 'USD', country: 'UY'},
 meta={'dont_merge_cookies': True})

	encoding (int or float) – the encoding of this request (defaults to 'utf-8').
This encoding will be used to percent-encode the URL and to convert the
body to str (if given as unicode).

	priority – the priority of this request (defaults to 0.0).
The priority is used by the scheduler to define the order used to return
requests. It can also be used to feed priorities externally, for
example, using an offline long-term scheduler.

	dont_filter (boolean) – indicates that this request should not be filtered by
the scheduler. This is used when you want to perform an identical
request multiple times, to ignore the duplicates filter. Use it with
care, or you will get into crawling loops. Default to False.

	callback (callable) – the function that will be called with the response of this
request (once its downloaded) as its first parameter. For more information
see Passing arguments to callback functions below.
If a Request doesn’t specify a callback, the spider’s
parse() method will be used.

	errback (callable) – a function that will be called if any exception was
raised while processing the request. This includes pages that failed
with 404 HTTP errors and such. It receives a Twisted Failure [http://twistedmatrix.com/documents/8.2.0/api/twisted.python.failure.Failure.html] instance
as first parameter.

	
url

	A string containing the URL of this request. Keep in mind that this
attribute contains the escaped URL, so it can differ from the URL passed in
the constructor.

This attribute is read-only. To change the URL of a Request use
replace().

	
method

	A string representing the HTTP method in the request. This is guaranteed to
be uppercase. Example: "GET", "POST", "PUT", etc

	
headers

	A dictionary-like object which contains the request headers.

	
body

	A str that contains the request body.

This attribute is read-only. To change the body of a Request use
replace().

	
meta

	A dict that contains arbitrary metadata for this request. This dict is
empty for new Requests, and is usually populated by different Scrapy
components (extensions, middlewares, etc). So the data contained in this
dict depends on the extensions you have enabled.

See Request.meta special keys for a list of special meta keys
recognized by Scrapy.

This dict is shallow copied [http://docs.python.org/library/copy.html] when the request is cloned using the
copy() or replace() methods, and can also be accesed, in your
spider, from the response.meta attribute.

	
copy()

	Return a new Request which is a copy of this Request. See also:
Passing arguments to callback functions.

	
replace([url, callback, method, headers, body, cookies, meta, encoding, dont_filter, callback, errback])

	Return a Request object with the same members, except for those members
given new values by whichever keyword arguments are specified. The
attribute Request.meta is copied by default (unless a new value
is given in the meta argument). See also
Passing arguments to callback functions.

Passing arguments to callback functions

The callback of a request is a function that will be called when the response
of that request is downloaded. The callback function will be called with the
Response object downloaded as its first argument.

Example:

def parse_page1(self, response):
 request = Request("http://www.example.com/some_page.html",
 callback=self.parse_page2)

def parse_page2(self, response):
 # this would log http://www.example.com/some_page.html
 self.log("Visited %s" % response.url)

In some cases you may be interested in passing arguments to those callback
functions so you can receive those arguments later, when the response is
downloaded. There are two ways for doing this:

	using a lambda function (or any other function/callable)

	using the Request.meta attribute.

Here’s an example of logging the referer URL of each page using each mechanism.
Keep in mind, however, that the referer URL could be accessed easier via
response.request.url).

Using lambda function:

def parse_page1(self, response):
 myarg = response.url
 request = Request("http://www.example.com/some_page.html",
 callback=lambda r: self.parse_page2(r, myarg))

def parse_page2(self, response, referer_url):
 self.log("Visited page %s from %s" % (response.url, referer_url))

Using Request.meta:

def parse_page1(self, response):
 request = Request("http://www.example.com/some_page.html",
 callback=self.parse_page2)
 request.meta['referer_url'] = response.url

def parse_page2(self, response):
 referer_url = response.request.meta['referer_url']
 self.log("Visited page %s from %s" % (response.url, referer_url))

Request.meta special keys

The Request.meta attribute can contain any arbitrary data, but there
are some special keys recognized by Scrapy and its built-in extensions.

Those are:

	dont_redirect

	dont_retry

	handle_httpstatus_list

	dont_merge_cookies (see cookies parameter of Request constructor)

	redirect_urls

Request subclasses

Here is the list of built-in Request subclasses. You can also subclass
it to implement your own custom functionality.

FormRequest objects

The FormRequest class extends the base Request with functionality for
dealing with HTML forms. It uses the ClientForm [http://wwwsearch.sourceforge.net/ClientForm/] library (bundled with
Scrapy) to pre-populate form fields with form data from Response
objects.

	
class scrapy.http.FormRequest(url[, formdata, ...])

	The FormRequest class adds a new argument to the constructor. The
remaining arguments are the same as for the Request class and are
not documented here.

	Parameters:	formdata (dict or iterable of tuples) – is a dictionary (or iterable of (key, value) tuples)
containing HTML Form data which will be url-encoded and assigned to the
body of the request.

The FormRequest objects support the following class method in
addition to the standard Request methods:

	
classmethod from_response(response[, formname=None, formnumber=0, formdata=None, clickdata=None, dont_click=False, ...])

	Returns a new FormRequest object with its form field values
pre-populated with those found in the HTML <form> element contained
in the given response. For an example see
Using FormRequest.from_response() to simulate a user login.

Keep in mind that this method is implemented using ClientForm [http://wwwsearch.sourceforge.net/ClientForm/] whose
policy is to automatically simulate a click, by default, on any form
control that looks clickable, like a <input type="submit">. Even
though this is quite convenient, and often the desired behaviour,
sometimes it can cause problems which could be hard to debug. For
example, when working with forms that are filled and/or submitted using
javascript, the default from_response() (and ClientForm [http://wwwsearch.sourceforge.net/ClientForm/])
behaviour may not be the most appropiate. To disable this behaviour you
can set the dont_click argument to True. Also, if you want to
change the control clicked (instead of disabling it) you can also use
the clickdata argument.

	Parameters:	
	response (Response object) – the response containing a HTML form which will be used
to pre-populate the form fields

	formname (string) – if given, the form with name attribute set to this value
will be used. Otherwise, formnumber will be used for selecting
the form.

	formnumber (integer) – the number of form to use, when the response contains
multiple forms. The first one (and also the default) is 0.

	formdata (dict) – fields to override in the form data. If a field was
already present in the response <form> element, its value is
overridden by the one passed in this parameter.

	clickdata (dict) – Arguments to be passed directly to the ClientForm
click_request_data() method. See ClientForm [http://wwwsearch.sourceforge.net/ClientForm/] homepage for
more info.

	dont_click (boolean) – If True, the form data will be sumbitted without
clicking in any element.

The other parameters of this class method are passed directly to the
FormRequest constructor.

New in version 0.10.3: The formname parameter.

Request usage examples

Using FormRequest to send data via HTTP POST

If you want to simulate a HTML Form POST in your spider and send a couple of
key-value fields, you can return a FormRequest object (from your
spider) like this:

return [FormRequest(url="http://www.example.com/post/action",
 formdata={'name': 'John Doe', age: '27'},
 callback=self.after_post)]

Using FormRequest.from_response() to simulate a user login

It is usual for web sites to provide pre-populated form fields through <input
type="hidden"> elements, such as session related data or authentication
tokens (for login pages). When scraping, you’ll want these fields to be
automatically pre-populated and only override a couple of them, such as the
user name and password. You can use the FormRequest.from_response()
method for this job. Here’s an example spider which uses it:

class LoginSpider(BaseSpider):
 name = 'example.com'
 start_urls = ['http://www.example.com/users/login.php']

 def parse(self, response):
 return [FormRequest.from_response(response,
 formdata={'username': 'john', 'password': 'secret'},
 callback=self.after_login)]

 def after_login(self, response):
 # check login succeed before going on
 if "authentication failed" in response.body:
 self.log("Login failed", level=log.ERROR)
 return

 # continue scraping with authenticated session...

Response objects

	
class scrapy.http.Response(url[, status=200, headers, body, flags])

	A Response object represents an HTTP response, which is usually
downloaded (by the Downloader) and fed to the Spiders for processing.

	Parameters:	
	url (string) – the URL of this response

	headers (dict) – the headers of this response. The dict values can be strings
(for single valued headers) or lists (for multi-valued headers).

	status (integer) – the HTTP status of the response. Defaults to 200.

	body (str) – the response body. It must be str, not unicode, unless you’re
using a encoding-aware Response subclass, such as
TextResponse.

	meta (dict) – the initial values for the Response.meta attribute. If
given, the dict will be shallow copied.

	flags (list) – is a list containing the initial values for the
Response.flags attribute. If given, the list will be shallow
copied.

	
url

	A string containing the URL of the response.

This attribute is read-only. To change the URL of a Response use
replace().

	
status

	An integer representing the HTTP status of the response. Example: 200,
404.

	
headers

	A dictionary-like object which contains the response headers.

	
body

	A str containing the body of this Response. Keep in mind that Reponse.body
is always a str. If you want the unicode version use
TextResponse.body_as_unicode() (only available in
TextResponse and subclasses).

This attribute is read-only. To change the body of a Response use
replace().

	
request

	The Request object that generated this response. This attribute is
assigned in the Scrapy engine, after the response and the request have passed
through all Downloader Middlewares.
In particular, this means that:

	HTTP redirections will cause the original request (to the URL before
redirection) to be assigned to the redirected response (with the final
URL after redirection).

	Response.request.url doesn’t always equal Response.url

	This attribute is only available in the spider code, and in the
Spider Middlewares, but not in
Downloader Middlewares (although you have the Request available there by
other means) and handlers of the response_downloaded signal.

	
meta

	A shortcut to the Request.meta attribute of the
Response.request object (ie. self.request.meta).

Unlike the Response.request attribute, the Response.meta
attribute is propagated along redirects and retries, so you will get
the original Request.meta sent from your spider.

See also

Request.meta attribute

	
flags

	A list that contains flags for this response. Flags are labels used for
tagging Responses. For example: ‘cached’, ‘redirected‘, etc. And
they’re shown on the string representation of the Response (__str__
method) which is used by the engine for logging.

	
copy()

	Returns a new Response which is a copy of this Response.

	
replace([url, status, headers, body, meta, flags, cls])

	Returns a Response object with the same members, except for those members
given new values by whichever keyword arguments are specified. The
attribute Response.meta is copied by default (unless a new value
is given in the meta argument).

Response subclasses

Here is the list of available built-in Response subclasses. You can also
subclass the Response class to implement your own functionality.

TextResponse objects

	
class scrapy.http.TextResponse(url[, encoding[, ...]])

	TextResponse objects adds encoding capabilities to the base
Response class, which is meant to be used only for binary data,
such as images, sounds or any media file.

TextResponse objects support a new constructor argument, in
addition to the base Response objects. The remaining functionality
is the same as for the Response class and is not documented here.

	Parameters:	encoding (string) – is a string which contains the encoding to use for this
response. If you create a TextResponse object with a unicode
body, it will be encoded using this encoding (remember the body attribute
is always a string). If encoding is None (default value), the
encoding will be looked up in the response headers and body instead.

TextResponse objects support the following attributes in addition
to the standard Response ones:

	
encoding

	A string with the encoding of this response. The encoding is resolved by
trying the following mechanisms, in order:

	the encoding passed in the constructor encoding argument

	the encoding declared in the Content-Type HTTP header. If this
encoding is not valid (ie. unknown), it is ignored and the next
resolution mechanism is tried.

	the encoding declared in the response body. The TextResponse class
doesn’t provide any special functionality for this. However, the
HtmlResponse and XmlResponse classes do.

	the encoding inferred by looking at the response body. This is the more
fragile method but also the last one tried.

TextResponse objects support the following methods in addition to
the standard Response ones:

	
body_as_unicode()

	Returns the body of the response as unicode. This is equivalent to:

response.body.decode(response.encoding)

But not equivalent to:

unicode(response.body)

Since, in the latter case, you would be using you system default encoding
(typically ascii) to convert the body to uniode, instead of the response
encoding.

HtmlResponse objects

	
class scrapy.http.HtmlResponse(url[, ...])

	The HtmlResponse class is a subclass of TextResponse
which adds encoding auto-discovering support by looking into the HTML meta
http-equiv [http://www.w3schools.com/TAGS/att_meta_http_equiv.asp] attribute. See TextResponse.encoding.

XmlResponse objects

	
class scrapy.http.XmlResponse(url[, ...])

	The XmlResponse class is a subclass of TextResponse which
adds encoding auto-discovering support by looking into the XML declaration
line. See TextResponse.encoding.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Settings

The Scrapy settings allows you to customize the behaviour of all Scrapy
components, including the core, extensions, pipelines and spiders themselves.

The infrastructure of the settings provides a global namespace of key-value mappings
that the code can use to pull configuration values from. The settings can be
populated through different mechanisms, which are described below.

The settings are also the mechanism for selecting the currently active Scrapy
project (in case you have many).

For a list of available built-in settings see: Built-in settings reference.

Designating the settings

When you use Scrapy, you have to tell it which settings you’re using. You can
do this by using an environment variable, SCRAPY_SETTINGS_MODULE.

The value of SCRAPY_SETTINGS_MODULE should be in Python path syntax, e.g.
myproject.settings. Note that the settings module should be on the
Python import search path [http://diveintopython.org/getting_to_know_python/everything_is_an_object.html].

Populating the settings

Settings can be populated using different mechanisms, each of which having a
different precedence. Here is the list of them in decreasing order of
precedence:

	Global overrides (most precedence)

	Project settings module

	Default settings per-command

	Default global settings (less precedence)

These mechanisms are described in more detail below.

1. Global overrides

Global overrides are the ones that take most precedence, and are usually
populated by command-line options.

	Example::

	>>> from scrapy.conf import settings
>>> settings.overrides['LOG_ENABLED'] = True

You can also override one (or more) settings from command line using the
--set command line argument.

Example:

scrapy crawl domain.com --set LOG_FILE=scrapy.log

2. Project settings module

The project settings module is the standard configuration file for your Scrapy
project. It’s where most of your custom settings will be populated. For
example:: myproject.settings.

3. Default settings per-command

Each Scrapy tool command can have its own default
settings, which override the global default settings. Those custom command
settings are specified in the default_settings attribute of the command
class.

4. Default global settings

The global defaults are located in the scrapy.settings.default_settings
module and documented in the Built-in settings reference section.

How to access settings

Here’s an example of the simplest way to access settings from Python code:

>>> from scrapy.conf import settings
>>> print settings['LOG_ENABLED']
True

In other words, settings can be accesed like a dict, but it’s usually preferred
to extract the setting in the format you need it to avoid type errors. In order
to do that you’ll have to use one of the following methods:

	
class scrapy.conf.Settings

	There is a (singleton) Settings object automatically instantiated when the
scrapy.conf module is loaded, and it’s usually accessed like this:

>>> from scrapy.conf import settings

	
get(name, default=None)

	Get a setting value without affecting its original type.

	Parameters:	
	name (string) – the setting name

	default (any) – the value to return if no setting is found

	
getbool(name, default=False)

	Get a setting value as a boolean. For example, both 1 and '1', and
True return True, while 0, '0', False and None
return False``

For example, settings populated through environment variables set to '0'
will return False when using this method.

	Parameters:	
	name (string) – the setting name

	default (any) – the value to return if no setting is found

	
getint(name, default=0)

	Get a setting value as an int

	Parameters:	
	name (string) – the setting name

	default (any) – the value to return if no setting is found

	
getfloat(name, default=0.0)

	Get a setting value as a float

	Parameters:	
	name (string) – the setting name

	default (any) – the value to return if no setting is found

	
getlist(name, default=None)

	Get a setting value as a list. If the setting original type is a list it
will be returned verbatim. If it’s a string it will be split by ”,”.

For example, settings populated through environment variables set to
'one,two' will return a list [‘one’, ‘two’] when using this method.

	Parameters:	
	name (string) – the setting name

	default (any) – the value to return if no setting is found

Rationale for setting names

Setting names are usually prefixed with the component that they configure. For
example, proper setting names for a fictional robots.txt extension would be
ROBOTSTXT_ENABLED, ROBOTSTXT_OBEY, ROBOTSTXT_CACHEDIR, etc.

Built-in settings reference

Here’s a list of all available Scrapy settings, in alphabetical order, along
with their default values and the scope where they apply.

The scope, where available, shows where the setting is being used, if it’s tied
to any particular component. In that case the module of that component will be
shown, typically an extension, middleware or pipeline. It also means that the
component must be enabled in order for the setting to have any effect.

AWS_ACCESS_KEY_ID

Default: None

The AWS access key used by code that requires access to Amazon Web services [http://aws.amazon.com/],
such as the S3 feed storage backend.

AWS_SECRET_ACCESS_KEY

Default: None

The AWS secret key used by code that requires access to Amazon Web services [http://aws.amazon.com/],
such as the S3 feed storage backend.

BOT_NAME

Default: 'scrapybot'

The name of the bot implemented by this Scrapy project (also known as the
project name). This will be used to construct the User-Agent by default, and
also for logging.

It’s automatically populated with your project name when you create your
project with the startproject command.

BOT_VERSION

Default: 1.0

The version of the bot implemented by this Scrapy project. This will be used to
construct the User-Agent by default.

CONCURRENT_ITEMS

Default: 100

Maximum number of concurrent items (per response) to process in parallel in the
Item Processor (also known as the Item Pipeline).

CONCURRENT_REQUESTS_PER_SPIDER

Default: 8

Specifies how many concurrent (ie. simultaneous) requests will be performed per
open spider.

CONCURRENT_SPIDERS

Default: 8

Maximum number of spiders to scrape in parallel.

COOKIES_DEBUG

Default: False

Enable debugging message of Cookies Downloader Middleware.

DEFAULT_ITEM_CLASS

Default: 'scrapy.item.Item'

The default class that will be used for instantiating items in the the
Scrapy shell.

DEFAULT_REQUEST_HEADERS

Default:

{
 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
 'Accept-Language': 'en',
}

The default headers used for Scrapy HTTP Requests. They’re populated in the
DefaultHeadersMiddleware.

DEFAULT_RESPONSE_ENCODING

Default: 'ascii'

The default encoding to use for TextResponse objects (and
subclasses) when no encoding is declared and no encoding could be inferred from
the body.

DEPTH_LIMIT

Default: 0

The maximum depth that will be allowed to crawl for any site. If zero, no limit
will be imposed.

DEPTH_STATS

Default: True

Whether to collect depth stats.

DOWNLOADER_DEBUG

Default: False

Whether to enable the Downloader debugging mode.

DOWNLOADER_MIDDLEWARES

Default:: {}

A dict containing the downloader middlewares enabled in your project, and their
orders. For more info see Activating a downloader middleware.

DOWNLOADER_MIDDLEWARES_BASE

Default:

{
 'scrapy.contrib.downloadermiddleware.robotstxt.RobotsTxtMiddleware': 100,
 'scrapy.contrib.downloadermiddleware.httpauth.HttpAuthMiddleware': 300,
 'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': 400,
 'scrapy.contrib.downloadermiddleware.retry.RetryMiddleware': 500,
 'scrapy.contrib.downloadermiddleware.defaultheaders.DefaultHeadersMiddleware': 550,
 'scrapy.contrib.downloadermiddleware.redirect.RedirectMiddleware': 600,
 'scrapy.contrib.downloadermiddleware.cookies.CookiesMiddleware': 700,
 'scrapy.contrib.downloadermiddleware.httpproxy.HttpProxyMiddleware': 750,
 'scrapy.contrib.downloadermiddleware.httpcompression.HttpCompressionMiddleware': 800,
 'scrapy.contrib.downloadermiddleware.stats.DownloaderStats': 850,
 'scrapy.contrib.downloadermiddleware.httpcache.HttpCacheMiddleware': 900,
}

A dict containing the downloader middlewares enabled by default in Scrapy. You
should never modify this setting in your project, modify
DOWNLOADER_MIDDLEWARES instead. For more info see
Activating a downloader middleware.

DOWNLOADER_STATS

Default: True

Whether to enable downloader stats collection.

DOWNLOAD_DELAY

Default: 0

The amount of time (in secs) that the downloader should wait before downloading
consecutive pages from the same spider. This can be used to throttle the
crawling speed to avoid hitting servers too hard. Decimal numbers are
supported. Example:

DOWNLOAD_DELAY = 0.25 # 250 ms of delay

This setting is also affected by the RANDOMIZE_DOWNLOAD_DELAY
setting (which is enabled by default). By default, Scrapy doesn’t wait a fixed
amount of time between requests, but uses a random interval between 0.5 and 1.5
* DOWNLOAD_DELAY.

You can also change this setting per spider.

DOWNLOAD_HANDLERS

Default: {}

A dict containing the request downloader handlers enabled in your project.
See DOWNLOAD_HANDLERS_BASE for example format.

DOWNLOAD_HANDLERS_BASE

Default:

{
 'file': 'scrapy.core.downloader.handlers.file.FileDownloadHandler',
 'http': 'scrapy.core.downloader.handlers.http.HttpDownloadHandler',
 'https': 'scrapy.core.downloader.handlers.http.HttpDownloadHandler',
 's3': 'scrapy.core.downloader.handlers.s3.S3DownloadHandler',
}

A dict containing the request download handlers enabled by default in Scrapy.
You should never modify this setting in your project, modify
DOWNLOAD_HANDLERS instead.

DOWNLOAD_TIMEOUT

Default: 180

The amount of time (in secs) that the downloader will wait before timing out.

DUPEFILTER_CLASS

Default: 'scrapy.contrib.dupefilter.RequestFingerprintDupeFilter'

The class used to detect and filter duplicate requests.

The default (RequestFingerprintDupeFilter) filters based on request fingerprint
(using scrapy.utils.request.request_fingerprint) and grouping per domain.

ENCODING_ALIASES

Default: {}

A mapping of custom encoding aliases for your project, where the keys are the
aliases (and must be lower case) and the values are the encodings they map to.

This setting extends the ENCODING_ALIASES_BASE setting which
contains some default mappings.

ENCODING_ALIASES_BASE

Default:

{
 # gb2312 is superseded by gb18030
 'gb2312': 'gb18030',
 'chinese': 'gb18030',
 'csiso58gb231280': 'gb18030',
 'euc- cn': 'gb18030',
 'euccn': 'gb18030',
 'eucgb2312-cn': 'gb18030',
 'gb2312-1980': 'gb18030',
 'gb2312-80': 'gb18030',
 'iso- ir-58': 'gb18030',
 # gbk is superseded by gb18030
 'gbk': 'gb18030',
 '936': 'gb18030',
 'cp936': 'gb18030',
 'ms936': 'gb18030',
 # latin_1 is a subset of cp1252
 'latin_1': 'cp1252',
 'iso-8859-1': 'cp1252',
 'iso8859-1': 'cp1252',
 '8859': 'cp1252',
 'cp819': 'cp1252',
 'latin': 'cp1252',
 'latin1': 'cp1252',
 'l1': 'cp1252',
 # others
 'zh-cn': 'gb18030',
 'win-1251': 'cp1251',
 'macintosh' : 'mac_roman',
 'x-sjis': 'shift_jis',
}

The default encoding aliases defined in Scrapy. Don’t override this setting in
your project, override ENCODING_ALIASES instead.

The reason why ISO-8859-1 [http://en.wikipedia.org/wiki/ISO/IEC_8859-1] (and all its aliases) are mapped to CP1252 [http://en.wikipedia.org/wiki/Windows-1252] is
due to a well known browser hack. For more information see: Character
encodings in HTML [http://en.wikipedia.org/wiki/Character_encodings_in_HTML].

EXTENSIONS

Default:: {}

A dict containing the extensions enabled in your project, and their orders.

EXTENSIONS_BASE

Default:

{
 'scrapy.contrib.corestats.CoreStats': 0,
 'scrapy.webservice.WebService': 0,
 'scrapy.telnet.TelnetConsole': 0,
 'scrapy.contrib.memusage.MemoryUsage': 0,
 'scrapy.contrib.memdebug.MemoryDebugger': 0,
 'scrapy.contrib.closedomain.CloseDomain': 0,
}

The list of available extensions. Keep in mind that some of them need to
be enabled through a setting. By default, this setting contains all stable
built-in extensions.

For more information See the extensions user guide
and the list of available extensions.

ITEM_PIPELINES

Default: []

The item pipelines to use (a list of classes).

Example:

ITEM_PIPELINES = [
 'mybot.pipeline.validate.ValidateMyItem',
 'mybot.pipeline.validate.StoreMyItem'
]

LOG_ENABLED

Default: True

Whether to enable logging.

LOG_ENCODING

Default: 'utf-8'

The encoding to use for logging.

LOG_FILE

Default: None

File name to use for logging output. If None, standard error will be used.

LOG_LEVEL

Default: 'DEBUG'

Minimum level to log. Available levels are: CRITICAL, ERROR, WARNING,
INFO, DEBUG. For more info see Logging.

LOG_STDOUT

Default: False

If True, all standard output (and error) of your process will be redirected
to the log. For example if you print 'hello' it will appear in the Scrapy
log.

MEMDEBUG_ENABLED

Default: False

Whether to enable memory debugging.

MEMDEBUG_NOTIFY

Default: []

When memory debugging is enabled a memory report will be sent to the specified
addresses if this setting is not empty, otherwise the report will be written to
the log.

Example:

MEMDEBUG_NOTIFY = ['user@example.com']

MEMUSAGE_ENABLED

Default: False

Scope: scrapy.contrib.memusage

Whether to enable the memory usage extension that will shutdown the Scrapy
process when it exceeds a memory limit, and also notify by email when that
happened.

See Memory usage extension.

MEMUSAGE_LIMIT_MB

Default: 0

Scope: scrapy.contrib.memusage

The maximum amount of memory to allow (in megabytes) before shutting down
Scrapy (if MEMUSAGE_ENABLED is True). If zero, no check will be performed.

See Memory usage extension.

MEMUSAGE_NOTIFY_MAIL

Default: False

Scope: scrapy.contrib.memusage

A list of emails to notify if the memory limit has been reached.

Example:

MEMUSAGE_NOTIFY_MAIL = ['user@example.com']

See Memory usage extension.

MEMUSAGE_REPORT

Default: False

Scope: scrapy.contrib.memusage

Whether to send a memory usage report after each domain has been closed.

See Memory usage extension.

MEMUSAGE_WARNING_MB

Default: 0

Scope: scrapy.contrib.memusage

The maximum amount of memory to allow (in megabytes) before sending a warning
email notifying about it. If zero, no warning will be produced.

NEWSPIDER_MODULE

Default: ''

Module where to create new spiders using the genspider command.

Example:

NEWSPIDER_MODULE = 'mybot.spiders_dev'

RANDOMIZE_DOWNLOAD_DELAY

Default: True

If enabled, Scrapy will wait a random amount of time (between 0.5 and 1.5
* DOWNLOAD_DELAY) while fetching requests from the same
spider.

This randomization decreases the chance of the crawler being detected (and
subsequently blocked) by sites which analyze requests looking for statistically
significant similarities in the time between their requests.

The randomization policy is the same used by wget [http://www.gnu.org/software/wget/manual/wget.html] --random-wait option.

If DOWNLOAD_DELAY is zero (default) this option has no effect.

REDIRECT_MAX_TIMES

Default: 20

Defines the maximun times a request can be redirected. After this maximun the
request’s response is returned as is. We used Firefox default value for the
same task.

REDIRECT_MAX_METAREFRESH_DELAY

Default: 100

Some sites use meta-refresh for redirecting to a session expired page, so we
restrict automatic redirection to a maximum delay (in seconds)

REDIRECT_PRIORITY_ADJUST

Default: +2

Adjust redirect request priority relative to original request.
A negative priority adjust means more priority.

ROBOTSTXT_OBEY

Default: False

Scope: scrapy.contrib.downloadermiddleware.robotstxt

If enabled, Scrapy will respect robots.txt policies. For more information see
RobotsTxtMiddleware

SCHEDULER

Default: 'scrapy.core.scheduler.Scheduler'

The scheduler to use for crawling.

SCHEDULER_ORDER

Default: 'DFO'

Scope: scrapy.core.scheduler

The order to use for the crawling scheduler. Available orders are:

	'BFO': Breadth-first order [http://en.wikipedia.org/wiki/Breadth-first_search] - typically consumes more memory but
reaches most relevant pages earlier.

	'DFO': Depth-first order [http://en.wikipedia.org/wiki/Depth-first_search] - typically consumes less memory than
but takes longer to reach most relevant pages.

SCHEDULER_MIDDLEWARES

Default:: {}

A dict containing the scheduler middlewares enabled in your project, and their
orders.

SCHEDULER_MIDDLEWARES_BASE

Default:

SCHEDULER_MIDDLEWARES_BASE = {
 'scrapy.contrib.schedulermiddleware.duplicatesfilter.DuplicatesFilterMiddleware': 500,
}

A dict containing the scheduler middlewares enabled by default in Scrapy. You
should never modify this setting in your project, modify
SCHEDULER_MIDDLEWARES instead.

SPIDER_MIDDLEWARES

Default:: {}

A dict containing the spider middlewares enabled in your project, and their
orders. For more info see Activating a spider middleware.

SPIDER_MIDDLEWARES_BASE

Default:

{
 'scrapy.contrib.spidermiddleware.httperror.HttpErrorMiddleware': 50,
 'scrapy.contrib.itemsampler.ItemSamplerMiddleware': 100,
 'scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware': 500,
 'scrapy.contrib.spidermiddleware.referer.RefererMiddleware': 700,
 'scrapy.contrib.spidermiddleware.urllength.UrlLengthMiddleware': 800,
 'scrapy.contrib.spidermiddleware.depth.DepthMiddleware': 900,
}

A dict containing the spider middlewares enabled by default in Scrapy. You
should never modify this setting in your project, modify
SPIDER_MIDDLEWARES instead. For more info see
Activating a spider middleware.

SPIDER_MODULES

Default: []

A list of modules where Scrapy will look for spiders.

Example:

SPIDER_MODULES = ['mybot.spiders_prod', 'mybot.spiders_dev']

SQLITE_DB

Default: 'scrapy.db'

The location of the project SQLite database, used for storing the spider queue
and other persistent data of the project. If a relative path is given, is taken
relative to the project data dir. For more info see:
Default structure of Scrapy projects.

STATS_CLASS

Default: 'scrapy.statscol.MemoryStatsCollector'

The class to use for collecting stats (must implement the Stats Collector API,
or subclass the StatsCollector class).

STATS_DUMP

Default: False

Dump (to log) domain-specific stats collected when a domain is closed, and all
global stats when the Scrapy process finishes (ie. when the engine is
shutdown).

STATS_ENABLED

Default: True

Enable stats collection.

STATSMAILER_RCPTS

Default: [] (empty list)

Send Scrapy stats after domains finish scraping. See
StatsMailer for more info.

TELNETCONSOLE_ENABLED

Default: True

A boolean which specifies if the telnet console
will be enabled (provided its extension is also enabled).

TELNETCONSOLE_PORT

Default: [6023, 6073]

The port range to use for the telnet console. If set to None or 0, a
dynamically assigned port is used. For more info see
Telnet Console.

TEMPLATES_DIR

Default: templates dir inside scrapy module

The directory where to look for templates when creating new projects with
startproject command.

URLLENGTH_LIMIT

Default: 2083

Scope: contrib.spidermiddleware.urllength

The maximum URL length to allow for crawled URLs. For more information about
the default value for this setting see: http://www.boutell.com/newfaq/misc/urllength.html

USER_AGENT

Default: "%s/%s" % (BOT_NAME, BOT_VERSION)

The default User-Agent to use when crawling, unless overridden.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Signals

Scrapy uses signals extensively to notify when certain events occur. You can
catch some of those signals in your Scrapy project (using an extension, for example) to perform additional tasks or extend Scrapy
to add functionality not provided out of the box.

Even though signals provide several arguments, the handlers that catch them
don’t need to accept all of them - the signal dispatching mechanism will only
deliver the arguments that the handler receives.

Finally, for more detailed information about signals internals see the
documentation of pydispatcher [http://pydispatcher.sourceforge.net/] (the which the signal dispatching mechanism is
based on).

Deferred signal handlers

Some signals support returning Twisted deferreds [http://twistedmatrix.com/documents/current/core/howto/defer.html] from their handlers, see
the Built-in signals reference below to know which ones.

Built-in signals reference

Here’s the list of Scrapy built-in signals and their meaning.

engine_started

	
scrapy.signals.engine_started()

	Sent when the Scrapy engine is started (for example, when a crawling
process has started).

This signal supports returning deferreds from their handlers.

engine_stopped

	
scrapy.signals.engine_stopped()

	Sent when the Scrapy engine is stopped (for example, when a crawling
process has finished).

This signal supports returning deferreds from their handlers.

item_scraped

	
scrapy.signals.item_scraped(item, spider, response)

	Sent when the engine receives a new scraped item from the spider, and right
before the item is sent to the Item Pipeline.

This signal supports returning deferreds from their handlers.

	Parameters:	
	item (Item object) – is the item scraped

	spider (BaseSpider object) – the spider which scraped the item

	response (Response object) – the response from which the item was scraped

item_passed

	
scrapy.signals.item_passed(item, spider, original_item)

	Sent after an item has passed all the Item Pipeline stages
without being dropped. Same as item_scraped() if there are no
pipelines enabled.

This signal supports returning deferreds from their handlers.

	Parameters:	
	item (Item object) – the item which passed the pipeline

	spider (BaseSpider object) – the spider which scraped the item

	original_item – the input of the item pipeline. This is typically the
same Item object received in the item
parameter, unless some pipeline stage created a new item.

item_dropped

	
scrapy.signals.item_dropped(item, spider, exception)

	Sent after an item has been dropped from the Item Pipeline
when some stage raised a DropItem exception.

This signal supports returning deferreds from their handlers.

	Parameters:	
	item (Item object) – the item dropped from the Item Pipeline

	spider (BaseSpider object) – the spider which scraped the item

	exception (DropItem exception) – the exception (which must be a
DropItem subclass) which caused the item
to be dropped

spider_closed

	
scrapy.signals.spider_closed(spider, reason)

	Sent after a spider has been closed. This can be used to release per-spider
resources reserved on spider_opened.

This signal supports returning deferreds from their handlers.

	Parameters:	
	spider (BaseSpider object) – the spider which has been closed

	reason (str) – a string which describes the reason why the spider was closed. If
it was closed because the spider has completed scraping, the reason
is 'finished'. Otherwise, if the spider was manually closed by
calling the close_spider engine method, then the reason is the one
passed in the reason argument of that method (which defaults to
'cancelled'). If the engine was shutdown (for example, by hitting
Ctrl-C to stop it) the reason will be 'shutdown'.

spider_opened

	
scrapy.signals.spider_opened(spider)

	Sent after a spider has been opened for crawling. This is typically used to
reserve per-spider resources, but can be used for any task that needs to be
performed when a spider is opened.

This signal supports returning deferreds from their handlers.

	Parameters:	spider (BaseSpider object) – the spider which has been opened

spider_idle

	
scrapy.signals.spider_idle(spider)

	Sent when a spider has gone idle, which means the spider has no further:

	requests waiting to be downloaded

	requests scheduled

	items being processed in the item pipeline

If the idle state persists after all handlers of this signal have finished,
the engine starts closing the spider. After the spider has finished
closing, the spider_closed signal is sent.

You can, for example, schedule some requests in your spider_idle
handler to prevent the spider from being closed.

This signal does not support returning deferreds from their handlers.

	Parameters:	spider (BaseSpider object) – the spider which has gone idle

request_received

	
scrapy.signals.request_received(request, spider)

	Sent when the engine receives a Request from a spider.

This signal does not support returning deferreds from their handlers.

	Parameters:	
	request (Request object) – the request received

	spider (BaseSpider object) – the spider which generated the request

response_received

	
scrapy.signals.response_received(response, request, spider)

	Sent when the engine receives a new Response from the
downloader.

This signal does not support returning deferreds from their handlers.

	Parameters:	
	response (Response object) – the response received

	request (Request object) – the request that generated the response

	spider (BaseSpider object) – the spider for which the response is intended

response_downloaded

	
scrapy.signals.response_downloaded(response, request, spider)

	Sent by the downloader right after a HTTPResponse is downloaded.

This signal does not support returning deferreds from their handlers.

	Parameters:	
	response (Response object) – the response downloaded

	request (Request object) – the request that generated the response

	spider (BaseSpider object) – the spider for which the response is intended

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Exceptions

Built-in Exceptions reference

Here’s a list of all exceptions included in Scrapy and their usage.

DropItem

	
exception scrapy.exceptions.DropItem

	

The exception that must be raised by item pipeline stages to stop processing an
Item. For more information see Item Pipeline.

IgnoreRequest

	
exception scrapy.exceptions.IgnoreRequest

	

This exception can be raised by the Scheduler or any downloader middleware to
indicate that the request should be ignored.

NotConfigured

	
exception scrapy.exceptions.NotConfigured

	

This exception can be raised by some components to indicate that they will
remain disabled. Those components include:

	Extensions

	Item pipelines

	Downloader middlwares

	Spider middlewares

The exception must be raised in the component constructor.

NotSupported

	
exception scrapy.exceptions.NotSupported

	

This exception is raised to indicate an unsupported feature.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Item Exporters

Once you have scraped your Items, you often want to persist or export those
items, to use the data in some other application. That is, after all, the whole
purpose of the scraping process.

For this purpose Scrapy provides a collection of Item Exporters for different
output formats, such as XML, CSV or JSON.

Using Item Exporters

If you are in a hurry, and just want to use an Item Exporter to output scraped
data see the Feed exports. Otherwise, if you want to know how
Item Exporters work or need more custom functionality (not covered by the
default exports), continue reading below.

In order to use an Item Exporter, you must instantiate it with its required
args. Each Item Exporter requires different arguments, so check each exporter
documentation to be sure, in Built-in Item Exporters reference. After you have
instantiated you exporter, you have to:

1. call the method start_exporting() in order to
signal the beginning of the exporting process

2. call the export_item() method for each item you want
to export

3. and finally call the finish_exporting() to signal
the end of the exporting process

Here you can see an Item Pipeline which uses an Item
Exporter to export scraped items to different files, one per spider:

from scrapy.xlib.pydispatch import dispatcher
from scrapy import signals
from scrapy.contrib.exporter import XmlItemExporter

class XmlExportPipeline(object):

 def __init__(self):
 dispatcher.connect(self.spider_opened, signals.spider_opened)
 dispatcher.connect(self.spider_closed, signals.spider_closed)
 self.files = {}

 def spider_opened(self, spider):
 file = open('%s_products.xml' % spider.name, 'w+b')
 self.files[spider] = file
 self.exporter = XmlItemExporter(file)
 self.exporter.start_exporting()

 def spider_closed(self, spider):
 self.exporter.finish_exporting()
 file = self.files.pop(spider)
 file.close()

 def process_item(self, item, spider):
 self.exporter.export_item(item)
 return item

Serialization of item fields

By default, the field values are passed unmodified to the underlying
serialization library, and the decision of how to serialize them is delegated
to each particular serialization library.

However, you can customize how each field value is serialized before it is
passed to the serialization library.

There are two ways to customize how a field will be serialized, which are
described next.

1. Declaring a serializer in the field

You can declare a serializer in the field metadata. The serializer must be a callable which receives a
value and returns its serialized form.

Example:

from scrapy.item import Item, Field

def serialize_price(value):
 return '$ %s' % str(value)

class Product(Item):
 name = Field()
 price = Field(serializer=serialize_price)

2. Overriding the serialize_field() method

You can also override the serialize() method to
customize how your field value will be exported.

Make sure you call the base class serialize() method
after your custom code.

Example:

from scrapy.contrib.exporter import XmlItemExporter

class ProductXmlExporter(XmlItemExporter):

 def serialize_field(self, field, name, value):
 if field == 'price':
 return '$ %s' % str(value)
 return super(Product, self).serialize_field(field, name, value)

Built-in Item Exporters reference

Here is a list of the Item Exporters bundled with Scrapy. Some of them contain
output examples, which assume you’re exporting these two items:

Item(name='Color TV', price='1200')
Item(name='DVD player', price='200')

BaseItemExporter

	
class scrapy.contrib.exporter.BaseItemExporter(fields_to_export=None, export_empty_fields=False, encoding='utf-8')

	This is the (abstract) base class for all Item Exporters. It provides
support for common features used by all (concrete) Item Exporters, such as
defining what fields to export, whether to export empty fields, or which
encoding to use.

These features can be configured through the constructor arguments which
populate their respective instance attributes: fields_to_export,
export_empty_fields, encoding.

	
export_item(item)

	Exports the given item. This method must be implemented in subclasses.

	
serialize_field(field, name, value)

	Return the serialized value for the given field. You can override this
method (in your custom Item Exporters) if you want to control how a
particular field or value will be serialized/exported.

By default, this method looks for a serializer declared in the item
field and returns the result of applying
that serializer to the value. If no serializer is found, it returns the
value unchanged except for unicode values which are encoded to
str using the encoding declared in the encoding attribute.

	Parameters:	
	field (Field object) – the field being serialized

	name (str) – the name of the field being serialized

	value – the value being serialized

	
start_exporting()

	Signal the beginning of the exporting process. Some exporters may use
this to generate some required header (for example, the
XmlItemExporter). You must call this method before exporting any
items.

	
finish_exporting()

	Signal the end of the exporting process. Some exporters may use this to
generate some required footer (for example, the
XmlItemExporter). You must always call this method after you
have no more items to export.

	
fields_to_export

	A list with the name of the fields that will be exported, or None if you
want to export all fields. Defaults to None.

Some exporters (like CsvItemExporter) respect the order of the
fields defined in this attribute.

	
export_empty_fields

	Whether to include empty/unpopulated item fields in the exported data.
Defaults to False. Some exporters (like CsvItemExporter)
ignore this attribute and always export all empty fields.

	
encoding

	The encoding that will be used to encode unicode values. This only
affects unicode values (which are always serialized to str using this
encoding). Other value types are passed unchanged to the specific
serialization library.

XmlItemExporter

	
class scrapy.contrib.exporter.XmlItemExporter(file, item_element='item', root_element='items', **kwargs)

	Exports Items in XML format to the specified file object.

	Parameters:	
	file – the file-like object to use for exporting the data.

	root_element (str) – The name of root element in the exported XML.

	item_element (str) – The name of each item element in the exported XML.

The additional keyword arguments of this constructor are passed to the
BaseItemExporter constructor.

A typical output of this exporter would be:

<?xml version="1.0" encoding="utf-8"?>
<items>
 <item>
 <name>Color TV</name>
 <price>1200</price>
 </item>
 <item>
 <name>DVD player</name>
 <price>200</price>
 </item>
</items>

Unless overriden in the serialize_field() method, multi-valued fields are
exported by serializing each value inside a <value> element. This is for
convenience, as multi-valued fields are very common.

For example, the item:

Item(name=['John', 'Doe'], age='23')

Would be serialized as:

<?xml version="1.0" encoding="utf-8"?>
<items>
 <item>
 <name>
 <value>John</value>
 <value>Doe</value>
 </name>
 <age>23</age>
 </item>
</items>

CsvItemExporter

	
class scrapy.contrib.exporter.CsvItemExporter(file, include_headers_line=True, **kwargs)

	Exports Items in CSV format to the given file-like object. If the
fields_to_export attribute is set, it will be used to define the
CSV columns and their order. The export_empty_fields attribute has
no effect on this exporter.

	Parameters:	
	file – the file-like object to use for exporting the data.

	include_headers_line (boolean) – If enabled, makes the exporter output a header
line with the field names taken from
BaseItemExporter.fields_to_export or the first exported item fields.

The additional keyword arguments of this constructor are passed to the
BaseItemExporter constructor, and the leftover arguments to the
csv.writer [http://docs.python.org/library/csv.html#csv.writer] constructor, so you can use any csv.writer constructor
argument to customize this exporter.

A typical output of this exporter would be:

product,price
Color TV,1200
DVD player,200

PickleItemExporter

	
class scrapy.contrib.exporter.PickleItemExporter(file, protocol=0, **kwargs)

	Exports Items in pickle format to the given file-like object.

	Parameters:	
	file – the file-like object to use for exporting the data.

	protocol (int) – The pickle protocol to use.

For more information, refer to the pickle module documentation [http://docs.python.org/library/pickle.html].

The additional keyword arguments of this constructor are passed to the
BaseItemExporter constructor.

Pickle isn’t a human readable format, so no output examples are provided.

PprintItemExporter

	
class scrapy.contrib.exporter.PprintItemExporter(file, **kwargs)

	Exports Items in pretty print format to the specified file object.

	Parameters:	file – the file-like object to use for exporting the data.

The additional keyword arguments of this constructor are passed to the
BaseItemExporter constructor.

A typical output of this exporter would be:

{'name': 'Color TV', 'price': '1200'}
{'name': 'DVD player', 'price': '200'}

Longer lines (when present) are pretty-formatted.

JsonItemExporter

	
class scrapy.contrib.exporter.JsonItemExporter(file, **kwargs)

	Exports Items in JSON format to the specified file-like object, writing all
objects as a list of objects. The additional constructor arguments are
passed to the BaseItemExporter constructor, and the leftover
arguments to the JSONEncoder [http://docs.python.org/library/json.html#json.JSONEncoder] constructor, so you can use any
JSONEncoder [http://docs.python.org/library/json.html#json.JSONEncoder] constructor argument to customize this exporter.

	Parameters:	file – the file-like object to use for exporting the data.

A typical output of this exporter would be:

[{"name": "Color TV", "price": "1200"},
{"name": "DVD player", "price": "200"}]

Warning

JSON is very simple and flexible serialization format, but it
doesn’t scale well for large amounts of data since incremental (aka.
stream-mode) parsing is not well supported (if at all) among JSON parsers
(on any language), and most of them just parse the entire object in
memory. If you want the power and simplicity of JSON with a more
stream-friendly format, consider using JsonLinesItemExporter
instead, or splitting the output in multiple chunks.

JsonLinesItemExporter

	
class scrapy.contrib.exporter.JsonLinesItemExporter(file, **kwargs)

	Exports Items in JSON format to the specified file-like object, writing one
JSON-encoded item per line. The additional constructor arguments are passed
to the BaseItemExporter constructor, and the leftover arguments to
the JSONEncoder [http://docs.python.org/library/json.html#json.JSONEncoder] constructor, so you can use any JSONEncoder [http://docs.python.org/library/json.html#json.JSONEncoder]
constructor argument to customize this exporter.

	Parameters:	file – the file-like object to use for exporting the data.

A typical output of this exporter would be:

{"name": "Color TV", "price": "1200"}
{"name": "DVD player", "price": "200"}

Unlike the one produced by JsonItemExporter, the format produced by
this exporter is well suited for serializing large amounts of data.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Contributing to Scrapy

There are many ways to contribute to Scrapy. Here are some of them:

	Blog about Scrapy. Tell the world how you’re using Scrapy. This will help
newcomers with more examples and the Scrapy project to increase its
visibility.

	Report bugs and request features in the ticket tracker [http://dev.scrapy.org/newticket], trying to follow
the guidelines detailed in Reporting bugs below.

	Submit patches for new functionality and/or bug fixes. Please read
Writing patches and Submitting patches below for details on how to
write and submit a patch.

	Join the scrapy-developers [http://groups.google.com/group/scrapy-developers] mailing list and share your ideas on how to
improve Scrapy. We’re always open to suggestions.

Reporting bugs

Well-written bug reports are very helpful, so keep in mind the following
guidelines when reporting a new bug.

	check the FAQ first to see if your issue is addressed in a
well-known question

	check the active tickets in the issue tracker to see if your issue has
already been reported. If it has, don’t dismiss the report but check the
ticket history and comments, you may find additional useful information to
contribute.

	search the scrapy-users [http://groups.google.com/group/scrapy-users] list to see if it has been discussed there, or
if you’re not sure if what you’re seeing is a bug. You can also ask in the
#scrapy IRC channel.

	write complete, reproducible, specific bug reports. The smaller the test
case, the better. Remember that other developers won’t have your project to
reproduce the bug, so please include all relevant files required to reproduce
it.

	include the output of scrapy version -v so developers working on your bug
know exactly which version and platform it occurred on, which is often very
helpful for reproducing it, or knowing if it was already fixed.

Writing patches

The better written a patch is, the higher chance that it’ll get accepted and
the sooner that will be merged.

Well-written patches should:

	contain the minimum amount of code required for the specific change. Small
patches are easier to review and merge. So, if you’re doing more than one
change (or bug fix), please consider submitting one patch per change. Do not
collapse multiple changes into a single patch. For big changes consider using
a patch queue.

	pass all unit-tests. See Running tests below.

	include one (or more) test cases that check the bug fixed or the new
functionality added. See Writing tests below.

	if you’re adding or changing a public (documented) API, please include
the documentation changes in the same patch. See Documentation policies
below.

Submitting patches

To submit patches, any of the following mechanism is considered good:

	create appropriate tickets in the issue tracker and attach the patches to
those tickets. The patches can be generated using hg diff.

	send the patches to the scrapy-developers [http://groups.google.com/group/scrapy-developers] list, along with a comment
explaining what was fixed or the new functionality (what it is, why it’s
needed, etc). The more info you include, the easier will be for core
developers to understand and accept your patch.

	fork the Github mirror [http://github.com/insophia/scrapy/] and send a pull request when you’re done working on
the patch

	clone the Bitbucket mirror [http://bitbucket.org/insophia/scrapy/] and send a pull request when you’re done
working on the patch

You can also discuss the new functionality (or bug fix) in scrapy-developers [http://groups.google.com/group/scrapy-developers]
first, before creating the patch, but it’s always good to have a patch ready to
illustrate your arguments and show that you have put some additional thought
into the subject.

Coding style

Please follow these coding conventions when writing code for inclusion in
Scrapy:

	Unless otherwise specified, follow PEP 8 [https://www.python.org/dev/peps/pep-0008].

	It’s OK to use lines longer than 80 chars if it improves the code
readability.

	Don’t put your name in the code you contribute. Our policy is to keep
the contributor’s name in the AUTHORS [http://dev.scrapy.org/browser/AUTHORS] file distributed with Scrapy.

Documentation policies

	Don’t use docstrings for documenting classes, or methods which are
already documented in the official (sphinx) documentation. For example, the
ItemLoader.add_value() method should be documented in the sphinx
documentation and not its docstring.

	Do use docstrings for documenting functions not present in the official
(sphinx) documentation, such as functions from scrapy.utils package and
its sub-modules.

Tests

Tests are implemented using the Twisted unit-testing framework [http://twistedmatrix.com/documents/current/core/development/policy/test-standard.html] called
trial.

Running tests

To run all tests go to the root directory of Scrapy source code and run:

bin/runtests.sh (on unix)

bin\runtests.bat (on windows)

To run a specific test (say scrapy.tests.test_contrib_loader) use:

bin/runtests.sh scrapy.tests.test_contrib_loader (on unix)

bin\runtests.bat scrapy.tests.test_contrib_loader (on windows)

Writing tests

All functionality (including new features and bug fixes) must include a test
case to check that it works as expected, so please include tests for your
patches if you want them to get accepted sooner.

Scrapy uses unit-tests, which are located in the scrapy.tests package
(scrapy/tests [http://dev.scrapy.org/browser/scrapy/tests] directory). Their module name typically resembles the full
path of the module they’re testing. For example, the item loaders code is in:

scrapy.contrib.loader

And their unit-tests are in:

scrapy.tests.test_contrib_loader

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Versioning and API Stability

API stability is one of Scrapy major goals.

Versioning

When Scrapy reaches 1.0, each release will consist of three version numbers:

	major - big, backwards-incompatible changes

	minor - new features and backwards-compatible changes

	micro - bug fixes only

Until Scrapy reaches 1.0, minor releases (0.7, 0.8, etc) will follow the same
policy as major releases.

Sometimes the micro version can be omitted, for brevity, when it’s not
relevant.

API Stability

Methods or functions that start with a single dash (_) are private and
should never be relied as stable. Besides those, the plan is to stabilize and
document the entire API, as we approach the 1.0 release.

Also, keep in mind that stable doesn’t mean complete: stable APIs could grow
new methods or functionality but the existing methods should keep working the
same way.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

Experimental features

This section documents experimental Scrapy features that may become stable in
future releases, but whose API is not yet stable. Use them with caution, and
subscribe to the mailing lists [http://scrapy.org/community/] to get
notified of any changes.

Since it’s not revised so frequently, this section may contain documentation
which is outdated, incomplete or overlapping with stable documentation (until
it’s properly merged) . Use at your own risk.

Warning

This documentation is a work in progress. Use at your own risk.

	DjangoItem

	CrawlSpider v2

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 0.12.0 documentation

 	Experimental features

DjangoItem

DjangoItem is a class of item that gets its fields definition from a
Django model, you simply create a DjangoItem and specify what Django
model it relates to.

Besides of getting the model fields defined on your item, DjangoItem
provides a method to create and populate a Django model instance with the item
data.

Using DjangoItem

DjangoItem works much like ModelForms in Django, you create a subclass
and define its django_model atribute to ve a valid Django model. With this
you will get an item with a field for each Django model field.

In addition, you can define fields that aren’t present in the model and even
override fields that are present in the model defining them in the item.

Let’s see some examples:

Django model for the examples:

class Person(models.Model):
 name = models.CharField(max_length=255)
 age = models.IntegerField()

Defining a basic DjangoItem:

class PersonItem(DjangoItem):
 django_model = Person

DjangoItem work just like Item:

p = PersonItem()
p['name'] = 'John'
p['age'] = '22'

To obtain the Django model from the item, we call the extra method
save() of the DjangoItem:

>>> person = p.save()
>>> person.name
'John'
>>> person.age
'22'
>>> person.id
1

As you see the model is already saved when we call save(), we
can prevent this by calling it with commit=False. We can use
commit=False in save() method to obtain an unsaved model:

>>> person = p.save(commit=False)
>>> person.name
'John'
>>> person.age
'22'
>>> person.id
None

As said before, we can add other fields to the item:

class PersonItem(DjangoItem):
 django_model = Person
 sex = Field()

p = PersonItem()
p['name'] = 'John'
p['age'] = '22'
p['sex'] = 'M'

Note

fields added to the item won’t be taken into account when doing a
save()

And we can override the fields of the model with your own:

class PersonItem(DjangoItem):
 django_model = Person
 name = Field(default='No Name')

This is usefull to provide properties to the field, like a default or any other
property that your project uses.

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Scrapy 0.12.0 documentation

 	Experimental features

CrawlSpider v2

Introduction

TODO: introduction

Rules Matching

TODO: describe purpose of rules

Request Extractors & Processors

TODO: describe purpose of extractors & processors

Examples

TODO: plenty of examples

Reference

CrawlSpider

TODO: describe crawlspider

	
class scrapy.contrib_exp.crawlspider.spider.CrawlSpider

	TODO: describe class

Rules

TODO: describe spider rules

	
class scrapy.contrib_exp.crawlspider.rules.Rule

	TODO: describe Rules class

Request Extractors

TODO: describe extractors purpose

	
class scrapy.contrib_exp.crawlspider.reqext.BaseSgmlRequestExtractor

	TODO: describe base extractor

	
class scrapy.contrib_exp.crawlspider.reqext.SgmlRequestExtractor

	TODO: describe sgml extractor

	
class scrapy.contrib_exp.crawlspider.reqext.XPathRequestExtractor

	TODO: describe xpath request extractor

Request Processors

TODO: describe request processors

	
class scrapy.contrib_exp.crawlspider.reqproc.Canonicalize

	TODO: describe proc

	
class scrapy.contrib_exp.crawlspider.reqproc.Unique

	TODO: describe unique

	
class scrapy.contrib_exp.crawlspider.reqproc.FilterDomain

	TODO: describe filter domain

	
class scrapy.contrib_exp.crawlspider.reqproc.FilterUrl

	TODO: describe filter url

Request/Response Matchers

TODO: describe matchers

	
class scrapy.contrib_exp.crawlspider.matchers.BaseMatcher

	TODO: describe base matcher

	
class scrapy.contrib_exp.crawlspider.matchers.UrlMatcher

	TODO: describe url matcher

	
class scrapy.contrib_exp.crawlspider.matchers.UrlRegexMatcher

	TODO: describe UrlListMatcher

	
class scrapy.contrib_exp.crawlspider.matchers.UrlListMatcher

	TODO: describe url list matcher

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Scrapy 0.12.0 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 scrapy	

 	
 	
 scrapy.conf	
 Settings manager

 	
 	
 scrapy.contrib.closespider	
 Close spider extension

 	
 	
 scrapy.contrib.corestats.corestats	
 Core stats collection

 	
 	
 scrapy.contrib.debug	
 Extensions for debugging Scrapy

 	
 	
 scrapy.contrib.downloadermiddleware	

 	
 	
 scrapy.contrib.downloadermiddleware.cookies	
 Cookies Downloader Middleware

 	
 	
 scrapy.contrib.downloadermiddleware.defaultheaders	
 Default Headers Downloader Middleware

 	
 	
 scrapy.contrib.downloadermiddleware.downloadtimeout	
 Download timeout middleware

 	
 	
 scrapy.contrib.downloadermiddleware.httpauth	
 HTTP Auth downloader middleware

 	
 	
 scrapy.contrib.downloadermiddleware.httpcache	
 HTTP Cache downloader middleware

 	
 	
 scrapy.contrib.downloadermiddleware.httpcompression	
 Http Compression Middleware

 	
 	
 scrapy.contrib.downloadermiddleware.httpproxy	
 Http Proxy Middleware

 	
 	
 scrapy.contrib.downloadermiddleware.redirect	
 Redirection Middleware

 	
 	
 scrapy.contrib.downloadermiddleware.retry	
 Retry Middleware

 	
 	
 scrapy.contrib.downloadermiddleware.robotstxt	
 robots.txt middleware

 	
 	
 scrapy.contrib.downloadermiddleware.stats	
 Downloader Stats Middleware

 	
 	
 scrapy.contrib.downloadermiddleware.useragent	
 User Agent Middleware

 	
 	
 scrapy.contrib.exporter	
 Item Exporters

 	
 	
 scrapy.contrib.linkextractors	
 Link extractors classes

 	
 	
 scrapy.contrib.linkextractors.sgml	
 SGMLParser-based link extractors

 	
 	
 scrapy.contrib.loader	
 Item Loader class

 	
 	
 scrapy.contrib.loader.processor	
 A collection of processors to use with Item Loaders

 	
 	
 scrapy.contrib.memdebug	
 Memory debugger extension

 	
 	
 scrapy.contrib.memusage	
 Memory usage extension

 	
 	
 scrapy.contrib.pipeline.images	
 Images Pipeline

 	
 	
 scrapy.contrib.spidermiddleware	

 	
 	
 scrapy.contrib.spidermiddleware.depth	
 Depth Spider Middleware

 	
 	
 scrapy.contrib.spidermiddleware.httperror	
 HTTP Error Spider Middleware

 	
 	
 scrapy.contrib.spidermiddleware.offsite	
 Offiste Spider Middleware

 	
 	
 scrapy.contrib.spidermiddleware.referer	
 Referer Spider Middleware

 	
 	
 scrapy.contrib.spidermiddleware.urllength	
 URL Length Spider Middleware

 	
 	
 scrapy.contrib.spiders	
 Collection of generic spiders

 	
 	
 scrapy.contrib.statscol	
 Additional Stats Collectors

 	
 	
 scrapy.contrib.statsmailer	
 StatsMailer extension

 	
 	
 scrapy.contrib.webservice	
 Built-in web service resources

 	
 	
 scrapy.contrib.webservice.crawler	
 Crawler JSON-RPC resource

 	
 	
 scrapy.contrib.webservice.enginestatus	
 Engine Status JSON resource

 	
 	
 scrapy.contrib.webservice.stats	
 Stats JSON-RPC resource

 	
 	
 scrapy.contrib_exp.crawlspider.matchers	
 Matchers

 	
 	
 scrapy.contrib_exp.crawlspider.reqext	
 Request Extractors

 	
 	
 scrapy.contrib_exp.crawlspider.reqproc	
 Request Processors

 	
 	
 scrapy.contrib_exp.crawlspider.rules	
 Rules

 	
 	
 scrapy.contrib_exp.crawlspider.spider	
 CrawlSpider

 	
 	
 scrapy.contrib_exp.djangoitem	

 	
 	
 scrapy.exceptions	
 Scrapy exceptions

 	
 	
 scrapy.extension	
 The extension manager

 	
 	
 scrapy.http	
 Request and Response classes

 	
 	
 scrapy.item	
 Item and Field classes

 	
 	
 scrapy.log	
 Logging facility

 	
 	
 scrapy.mail	
 Email sending facility

 	
 	
 scrapy.selector	
 XPath selectors classes

 	
 	
 scrapy.signals	
 Signals definitions

 	
 	
 scrapy.spider	
 Spiders base class, spider manager and spider middleware

 	
 	
 scrapy.statscol	
 Basic Stats Collectors

 	
 	
 scrapy.telnet	
 The Telnet Console

 	
 	
 scrapy.utils.trackref	
 Track references of live objects

 	
 	
 scrapy.webservice	
 Web service

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Scrapy 0.12.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	

 	__nonzero__() (scrapy.selector.XPathSelector method)

A

 	

 	adapt_response() (scrapy.contrib.spiders.XMLFeedSpider method)

 	add_value() (scrapy.contrib.loader.ItemLoader method)

 	add_xpath() (scrapy.contrib.loader.XPathItemLoader method)

 	

 	allowed_domains (scrapy.spider.BaseSpider attribute)

 	
 AWS_ACCESS_KEY_ID

 	

 	setting

 	
 AWS_SECRET_ACCESS_KEY

 	

 	setting

B

 	

 	BaseItemExporter (class in scrapy.contrib.exporter)

 	BaseMatcher (class in scrapy.contrib_exp.crawlspider.matchers)

 	BaseSgmlLinkExtractor (class in scrapy.contrib.linkextractors.sgml)

 	BaseSgmlRequestExtractor (class in scrapy.contrib_exp.crawlspider.reqext)

 	BaseSpider (class in scrapy.spider)

 	

 	body (scrapy.http.Request attribute)

 	

 	(scrapy.http.Response attribute)

 	body_as_unicode() (scrapy.http.TextResponse method)

 	
 BOT_NAME

 	

 	setting

 	
 BOT_VERSION

 	

 	setting

C

 	

 	Canonicalize (class in scrapy.contrib_exp.crawlspider.reqproc)

 	clear_stats() (scrapy.statscol.StatsCollector method)

 	close_spider()

 	

 	(scrapy.statscol.StatsCollector method)

 	
 CLOSESPIDER_ERRORCOUNT

 	

 	setting

 	
 CLOSESPIDER_ITEMPASSED

 	

 	setting

 	
 CLOSESPIDER_PAGECOUNT

 	

 	setting

 	
 CLOSESPIDER_TIMEOUT

 	

 	setting

 	
 command

 	

 	crawl

 	deploy

 	fetch

 	genspider

 	list

 	parse

 	runspider

 	server

 	settings

 	shell

 	startproject

 	version

 	view

 	
 COMMANDS_MODULE

 	

 	setting

 	Compose (class in scrapy.contrib.loader.processor)

 	
 CONCURRENT_ITEMS

 	

 	setting

 	
 CONCURRENT_REQUESTS_PER_SPIDER

 	

 	setting

 	

 	
 CONCURRENT_SPIDERS

 	

 	setting

 	context (scrapy.contrib.loader.ItemLoader attribute)

 	
 COOKIES_DEBUG

 	

 	setting

 	CookiesMiddleware (class in scrapy.contrib.downloadermiddleware.cookies)

 	copy() (scrapy.http.Request method)

 	

 	(scrapy.http.Response method)

 	CoreStats (class in scrapy.contrib.corestats.corestats)

 	
 crawl

 	

 	command

 	CrawlerResource (class in scrapy.contrib.webservice.crawler)

 	CrawlSpider (class in scrapy.contrib.spiders)

 	

 	(class in scrapy.contrib_exp.crawlspider.spider)

 	CRITICAL (in module scrapy.log)

 	CSVFeedSpider (class in scrapy.contrib.spiders)

 	CsvItemExporter (class in scrapy.contrib.exporter)

D

 	

 	DEBUG (in module scrapy.log)

 	default_input_processor (scrapy.contrib.loader.ItemLoader attribute)

 	
 DEFAULT_ITEM_CLASS

 	

 	setting

 	default_item_class (scrapy.contrib.loader.ItemLoader attribute)

 	default_output_processor (scrapy.contrib.loader.ItemLoader attribute)

 	
 DEFAULT_REQUEST_HEADERS

 	

 	setting

 	
 DEFAULT_RESPONSE_ENCODING

 	

 	setting

 	default_selector_class (scrapy.contrib.loader.XPathItemLoader attribute)

 	DefaultHeadersMiddleware (class in scrapy.contrib.downloadermiddleware.defaultheaders)

 	delimiter (scrapy.contrib.spiders.CSVFeedSpider attribute)

 	
 deploy

 	

 	command

 	
 DEPTH_LIMIT

 	

 	setting

 	
 DEPTH_STATS

 	

 	setting

 	DepthMiddleware (class in scrapy.contrib.spidermiddleware.depth)

 	disabled (scrapy.extension.ExtensionManager attribute)

 	
 dont_redirect

 	

 	reqmeta

 	

 	
 dont_retry

 	

 	reqmeta

 	
 DOWNLOAD_DELAY

 	

 	setting

 	
 DOWNLOAD_HANDLERS

 	

 	setting

 	
 DOWNLOAD_HANDLERS_BASE

 	

 	setting

 	
 DOWNLOAD_TIMEOUT

 	

 	setting

 	
 DOWNLOADER_DEBUG

 	

 	setting

 	
 DOWNLOADER_MIDDLEWARES

 	

 	setting

 	
 DOWNLOADER_MIDDLEWARES_BASE

 	

 	setting

 	
 DOWNLOADER_STATS

 	

 	setting

 	DownloaderMiddleware (class in scrapy.contrib.downloadermiddleware)

 	DownloaderStats (class in scrapy.contrib.downloadermiddleware.stats)

 	DownloadTimeoutMiddleware (class in scrapy.contrib.downloadermiddleware.downloadtimeout)

 	DropItem

 	DummyStatsCollector (class in scrapy.statscol)

 	
 DUPEFILTER_CLASS

 	

 	setting

E

 	

 	enabled (scrapy.extension.ExtensionManager attribute)

 	encoding (scrapy.contrib.exporter.BaseItemExporter attribute)

 	

 	(scrapy.http.TextResponse attribute)

 	
 ENCODING_ALIASES

 	

 	setting

 	
 ENCODING_ALIASES_BASE

 	

 	setting

 	
 engine_started

 	

 	signal

 	engine_started() (in module scrapy.signals)

 	
 engine_stopped

 	

 	signal

 	engine_stopped() (in module scrapy.signals)

 	EngineStatusResource (class in scrapy.contrib.webservice.enginestatus)

 	

 	ERROR (in module scrapy.log)

 	export_empty_fields (scrapy.contrib.exporter.BaseItemExporter attribute)

 	export_item() (scrapy.contrib.exporter.BaseItemExporter method)

 	ExtensionManager (class in scrapy.extension)

 	
 EXTENSIONS

 	

 	setting

 	
 EXTENSIONS_BASE

 	

 	setting

 	extract() (scrapy.selector.XPathSelector method)

 	

 	(scrapy.selector.XPathSelectorList method)

 	extract_unquoted() (scrapy.selector.XPathSelectorList method)

F

 	

 	
 FEED_EXPORTERS

 	

 	setting

 	
 FEED_EXPORTERS_BASE

 	

 	setting

 	
 FEED_FORMAT

 	

 	setting

 	
 FEED_STORAGES

 	

 	setting

 	
 FEED_STORAGES_BASE

 	

 	setting

 	
 FEED_STORE_EMPTY

 	

 	setting

 	
 FEED_URI

 	

 	setting

 	
 fetch

 	

 	command

 	Field (class in scrapy.item)

 	

 	fields (scrapy.item.Item attribute)

 	fields_to_export (scrapy.contrib.exporter.BaseItemExporter attribute)

 	FilterDomain (class in scrapy.contrib_exp.crawlspider.reqproc)

 	FilterUrl (class in scrapy.contrib_exp.crawlspider.reqproc)

 	finish_exporting() (scrapy.contrib.exporter.BaseItemExporter method)

 	flags (scrapy.http.Response attribute)

 	FormRequest (class in scrapy.http)

 	from_response() (scrapy.http.FormRequest class method)

G

 	

 	
 genspider

 	

 	command

 	get() (scrapy.conf.Settings method)

 	get_collected_values() (scrapy.contrib.loader.ItemLoader method)

 	get_input_processor() (scrapy.contrib.loader.ItemLoader method)

 	get_media_requests() (scrapy.contrib.pipeline.images.ImagesPipeline method)

 	get_oldest() (in module scrapy.utils.trackref)

 	get_output_processor() (scrapy.contrib.loader.ItemLoader method)

 	get_output_value() (scrapy.contrib.loader.ItemLoader method)

 	

 	get_stats() (scrapy.statscol.StatsCollector method)

 	get_target() (scrapy.contrib.webservice.enginestatus.scrapy.webservice.JsonRpcResource method)

 	get_value() (scrapy.contrib.loader.ItemLoader method)

 	

 	(scrapy.statscol.StatsCollector method)

 	get_xpath() (scrapy.contrib.loader.XPathItemLoader method)

 	getbool() (scrapy.conf.Settings method)

 	getfloat() (scrapy.conf.Settings method)

 	getint() (scrapy.conf.Settings method)

 	getlist() (scrapy.conf.Settings method)

H

 	

 	
 handle_httpstatus_list

 	

 	reqmeta

 	headers (scrapy.contrib.spiders.CSVFeedSpider attribute)

 	

 	(scrapy.http.Request attribute)

 	(scrapy.http.Response attribute)

 	HtmlResponse (class in scrapy.http)

 	HtmlXPathSelector (class in scrapy.selector)

 	HttpAuthMiddleware (class in scrapy.contrib.downloadermiddleware.httpauth)

 	
 HTTPCACHE_DIR

 	

 	setting

 	
 HTTPCACHE_ENABLED

 	

 	setting

 	
 HTTPCACHE_EXPIRATION_SECS

 	

 	setting

 	

 	
 HTTPCACHE_IGNORE_HTTP_CODES

 	

 	setting

 	
 HTTPCACHE_IGNORE_MISSING

 	

 	setting

 	
 HTTPCACHE_IGNORE_SCHEMES

 	

 	setting

 	
 HTTPCACHE_STORAGE

 	

 	setting

 	HttpCacheMiddleware (class in scrapy.contrib.downloadermiddleware.httpcache)

 	HttpCompressionMiddleware (class in scrapy.contrib.downloadermiddleware.httpcompression)

 	HttpErrorMiddleware (class in scrapy.contrib.spidermiddleware.httperror)

 	HttpProxyMiddleware (class in scrapy.contrib.downloadermiddleware.httpproxy)

I

 	

 	Identity (class in scrapy.contrib.loader.processor)

 	IgnoreRequest

 	
 IMAGES_EXPIRES

 	

 	setting

 	
 IMAGES_MIN_HEIGHT

 	

 	setting

 	
 IMAGES_MIN_WIDTH

 	

 	setting

 	
 IMAGES_STORE

 	

 	setting

 	
 IMAGES_THUMBS

 	

 	setting

 	ImagesPipeline (class in scrapy.contrib.pipeline.images)

 	inc_value() (scrapy.statscol.StatsCollector method)

 	INFO (in module scrapy.log)

 	Item (class in scrapy.item)

 	item (scrapy.contrib.loader.ItemLoader attribute)

 	item_completed() (scrapy.contrib.pipeline.images.ImagesPipeline method)

 	

 	
 item_dropped

 	

 	signal

 	item_dropped() (in module scrapy.signals)

 	
 item_passed

 	

 	signal

 	item_passed() (in module scrapy.signals)

 	
 ITEM_PIPELINES

 	

 	setting

 	
 item_scraped

 	

 	signal

 	item_scraped() (in module scrapy.signals)

 	ItemLoader (class in scrapy.contrib.loader)

 	iter_all() (in module scrapy.utils.trackref)

 	iter_spider_stats() (scrapy.statscol.StatsCollector method)

 	iterator (scrapy.contrib.spiders.XMLFeedSpider attribute)

 	itertag (scrapy.contrib.spiders.XMLFeedSpider attribute)

J

 	

 	Join (class in scrapy.contrib.loader.processor)

 	JsonItemExporter (class in scrapy.contrib.exporter)

 	

 	JsonLinesItemExporter (class in scrapy.contrib.exporter)

L

 	

 	
 list

 	

 	command

 	load() (scrapy.extension.ExtensionManager method)

 	load_item() (scrapy.contrib.loader.ItemLoader method)

 	loaded (scrapy.extension.ExtensionManager attribute)

 	log() (scrapy.spider.BaseSpider method)

 	

 	
 LOG_ENABLED

 	

 	setting

 	
 LOG_ENCODING

 	

 	setting

 	
 LOG_FILE

 	

 	setting

 	
 LOG_LEVEL

 	

 	setting

 	
 LOG_STDOUT

 	

 	setting

M

 	

 	
 MAIL_FROM

 	

 	setting

 	
 MAIL_HOST

 	

 	setting

 	
 MAIL_PASS

 	

 	setting

 	
 MAIL_PORT

 	

 	setting

 	
 mail_sent

 	

 	signal

 	mail_sent() (in module scrapy.mail)

 	
 MAIL_USER

 	

 	setting

 	make_requests_from_url() (scrapy.spider.BaseSpider method)

 	MapCompose (class in scrapy.contrib.loader.processor)

 	max_value() (scrapy.statscol.StatsCollector method)

 	
 MEMDEBUG_ENABLED

 	

 	setting

 	

 	
 MEMDEBUG_NOTIFY

 	

 	setting

 	MemoryStatsCollector (class in scrapy.statscol)

 	
 MEMUSAGE_ENABLED

 	

 	setting

 	
 MEMUSAGE_LIMIT_MB

 	

 	setting

 	
 MEMUSAGE_NOTIFY_MAIL

 	

 	setting

 	
 MEMUSAGE_REPORT

 	

 	setting

 	
 MEMUSAGE_WARNING_MB

 	

 	setting

 	meta (scrapy.http.Request attribute)

 	

 	(scrapy.http.Response attribute)

 	method (scrapy.http.Request attribute)

 	min_value() (scrapy.statscol.StatsCollector method)

 	msg() (in module scrapy.log)

N

 	

 	name (scrapy.spider.BaseSpider attribute)

 	namespaces (scrapy.contrib.spiders.XMLFeedSpider attribute)

 	
 NEWSPIDER_MODULE

 	

 	setting

 	

 	NotConfigured

 	NotSupported

O

 	

 	object_ref (class in scrapy.utils.trackref)

 	OffsiteMiddleware (class in scrapy.contrib.spidermiddleware.offsite)

 	

 	open_spider()

 	

 	(scrapy.statscol.StatsCollector method)

P

 	

 	
 parse

 	

 	command

 	parse() (scrapy.spider.BaseSpider method)

 	parse_node() (scrapy.contrib.spiders.XMLFeedSpider method)

 	parse_row() (scrapy.contrib.spiders.CSVFeedSpider method)

 	PickleItemExporter (class in scrapy.contrib.exporter)

 	PprintItemExporter (class in scrapy.contrib.exporter)

 	print_live_refs() (in module scrapy.utils.trackref)

 	process_exception() (scrapy.contrib.downloadermiddleware.DownloaderMiddleware method)

 	

 	process_item()

 	process_request() (scrapy.contrib.downloadermiddleware.DownloaderMiddleware method)

 	process_response() (scrapy.contrib.downloadermiddleware.DownloaderMiddleware method)

 	process_results() (scrapy.contrib.spiders.XMLFeedSpider method)

 	process_spider_exception() (scrapy.contrib.spidermiddleware.SpiderMiddleware method)

 	process_spider_input() (scrapy.contrib.spidermiddleware.SpiderMiddleware method)

 	process_spider_output() (scrapy.contrib.spidermiddleware.SpiderMiddleware method)

 	
 Python Enhancement Proposals

 	

 	PEP 8

R

 	

 	
 RANDOMIZE_DOWNLOAD_DELAY

 	

 	setting

 	re() (scrapy.selector.XPathSelector method)

 	

 	(scrapy.selector.XPathSelectorList method)

 	
 REDIRECT_MAX_METAREFRESH_DELAY

 	

 	setting

 	
 REDIRECT_MAX_TIMES

 	

 	setting

 	
 REDIRECT_PRIORITY_ADJUST

 	

 	setting

 	
 redirect_urls

 	

 	reqmeta

 	RedirectMiddleware (class in scrapy.contrib.downloadermiddleware.redirect)

 	RefererMiddleware (class in scrapy.contrib.spidermiddleware.referer)

 	register_namespace() (scrapy.selector.XPathSelector method)

 	reload() (scrapy.extension.ExtensionManager method)

 	replace() (scrapy.http.Request method)

 	

 	(scrapy.http.Response method)

 	replace_value() (scrapy.contrib.loader.ItemLoader method)

 	replace_xpath() (scrapy.contrib.loader.XPathItemLoader method)

 	
 reqmeta

 	

 	dont_redirect

 	dont_retry

 	handle_httpstatus_list

 	redirect_urls

 	Request (class in scrapy.http)

 	

 	request (scrapy.http.Response attribute)

 	
 request_received

 	

 	signal

 	request_received() (in module scrapy.signals)

 	Response (class in scrapy.http)

 	
 response_downloaded

 	

 	signal

 	response_downloaded() (in module scrapy.signals)

 	
 response_received

 	

 	signal

 	response_received() (in module scrapy.signals)

 	RetryMiddleware (class in scrapy.contrib.downloadermiddleware.retry)

 	
 ROBOTSTXT_OBEY

 	

 	setting

 	RobotsTxtMiddleware (class in scrapy.contrib.downloadermiddleware.robotstxt)

 	Rule (class in scrapy.contrib.spiders)

 	

 	(class in scrapy.contrib_exp.crawlspider.rules)

 	rules (scrapy.contrib.spiders.CrawlSpider attribute)

 	
 runspider

 	

 	command

S

 	

 	
 SCHEDULER

 	

 	setting

 	
 SCHEDULER_MIDDLEWARES

 	

 	setting

 	
 SCHEDULER_MIDDLEWARES_BASE

 	

 	setting

 	
 SCHEDULER_ORDER

 	

 	setting

 	scrapy.conf (module)

 	scrapy.contrib.closespider (module)

 	scrapy.contrib.closespider.CloseSpider (class in scrapy.contrib.closespider)

 	scrapy.contrib.corestats.corestats (module)

 	scrapy.contrib.debug (module)

 	scrapy.contrib.debug.Debugger (class in scrapy.contrib.debug)

 	scrapy.contrib.debug.StackTraceDump (class in scrapy.contrib.debug)

 	scrapy.contrib.downloadermiddleware (module)

 	scrapy.contrib.downloadermiddleware.cookies (module)

 	scrapy.contrib.downloadermiddleware.defaultheaders (module)

 	scrapy.contrib.downloadermiddleware.downloadtimeout (module)

 	scrapy.contrib.downloadermiddleware.httpauth (module)

 	scrapy.contrib.downloadermiddleware.httpcache (module)

 	scrapy.contrib.downloadermiddleware.httpcompression (module)

 	scrapy.contrib.downloadermiddleware.httpproxy (module)

 	scrapy.contrib.downloadermiddleware.redirect (module)

 	scrapy.contrib.downloadermiddleware.retry (module)

 	scrapy.contrib.downloadermiddleware.robotstxt (module)

 	scrapy.contrib.downloadermiddleware.stats (module)

 	scrapy.contrib.downloadermiddleware.useragent (module)

 	scrapy.contrib.exporter (module)

 	scrapy.contrib.linkextractors (module)

 	scrapy.contrib.linkextractors.sgml (module)

 	scrapy.contrib.loader (module)

 	scrapy.contrib.loader.processor (module)

 	scrapy.contrib.memdebug (module)

 	scrapy.contrib.memdebug.MemoryDebugger (class in scrapy.contrib.memdebug)

 	scrapy.contrib.memusage (module)

 	scrapy.contrib.memusage.MemoryUsage (class in scrapy.contrib.memusage)

 	scrapy.contrib.pipeline.images (module)

 	scrapy.contrib.spidermiddleware (module)

 	scrapy.contrib.spidermiddleware.depth (module)

 	scrapy.contrib.spidermiddleware.httperror (module)

 	scrapy.contrib.spidermiddleware.offsite (module)

 	scrapy.contrib.spidermiddleware.referer (module)

 	scrapy.contrib.spidermiddleware.urllength (module)

 	scrapy.contrib.spiders (module)

 	scrapy.contrib.statscol (module)

 	scrapy.contrib.statsmailer (module)

 	scrapy.contrib.statsmailer.StatsMailer (class in scrapy.contrib.statsmailer)

 	scrapy.contrib.webservice (module)

 	scrapy.contrib.webservice.crawler (module)

 	scrapy.contrib.webservice.enginestatus (module)

 	scrapy.contrib.webservice.stats (module)

 	scrapy.contrib_exp.crawlspider.matchers (module)

 	scrapy.contrib_exp.crawlspider.reqext (module)

 	scrapy.contrib_exp.crawlspider.reqproc (module)

 	scrapy.contrib_exp.crawlspider.rules (module)

 	scrapy.contrib_exp.crawlspider.spider (module)

 	scrapy.contrib_exp.djangoitem (module)

 	scrapy.exceptions (module)

 	scrapy.extension (module)

 	scrapy.http (module)

 	scrapy.item (module)

 	scrapy.log (module)

 	scrapy.mail (module)

 	

 	scrapy.selector (module)

 	scrapy.signals (module)

 	scrapy.spider (module)

 	scrapy.statscol (module)

 	scrapy.telnet (module), [1]

 	scrapy.telnet.TelnetConsole (class in scrapy.telnet)

 	scrapy.utils.trackref (module)

 	scrapy.webservice (module)

 	scrapy.webservice.JsonResource (class in scrapy.contrib.webservice.enginestatus)

 	scrapy.webservice.JsonRpcResource (class in scrapy.contrib.webservice.enginestatus)

 	scrapy.webservice.WebService (class in scrapy.webservice)

 	select() (scrapy.selector.XPathSelector method)

 	

 	(scrapy.selector.XPathSelectorList method)

 	selector (scrapy.contrib.loader.XPathItemLoader attribute)

 	send() (in module scrapy.mail)

 	serialize_field() (scrapy.contrib.exporter.BaseItemExporter method)

 	
 server

 	

 	command

 	set_stats() (scrapy.statscol.StatsCollector method)

 	set_value() (scrapy.statscol.StatsCollector method)

 	
 setting

 	

 	AWS_ACCESS_KEY_ID

 	AWS_SECRET_ACCESS_KEY

 	BOT_NAME

 	BOT_VERSION

 	CLOSESPIDER_ERRORCOUNT

 	CLOSESPIDER_ITEMPASSED

 	CLOSESPIDER_PAGECOUNT

 	CLOSESPIDER_TIMEOUT

 	COMMANDS_MODULE

 	CONCURRENT_ITEMS

 	CONCURRENT_REQUESTS_PER_SPIDER

 	CONCURRENT_SPIDERS

 	COOKIES_DEBUG

 	DEFAULT_ITEM_CLASS

 	DEFAULT_REQUEST_HEADERS

 	DEFAULT_RESPONSE_ENCODING

 	DEPTH_LIMIT

 	DEPTH_STATS

 	DOWNLOADER_DEBUG

 	DOWNLOADER_MIDDLEWARES

 	DOWNLOADER_MIDDLEWARES_BASE

 	DOWNLOADER_STATS

 	DOWNLOAD_DELAY

 	DOWNLOAD_HANDLERS

 	DOWNLOAD_HANDLERS_BASE

 	DOWNLOAD_TIMEOUT

 	DUPEFILTER_CLASS

 	ENCODING_ALIASES

 	ENCODING_ALIASES_BASE

 	EXTENSIONS

 	EXTENSIONS_BASE

 	FEED_EXPORTERS

 	FEED_EXPORTERS_BASE

 	FEED_FORMAT

 	FEED_STORAGES

 	FEED_STORAGES_BASE

 	FEED_STORE_EMPTY

 	FEED_URI

 	HTTPCACHE_DIR

 	HTTPCACHE_ENABLED

 	HTTPCACHE_EXPIRATION_SECS

 	HTTPCACHE_IGNORE_HTTP_CODES

 	HTTPCACHE_IGNORE_MISSING

 	HTTPCACHE_IGNORE_SCHEMES

 	HTTPCACHE_STORAGE

 	IMAGES_EXPIRES

 	IMAGES_MIN_HEIGHT

 	IMAGES_MIN_WIDTH

 	IMAGES_STORE

 	IMAGES_THUMBS

 	ITEM_PIPELINES

 	LOG_ENABLED

 	LOG_ENCODING

 	LOG_FILE

 	LOG_LEVEL

 	LOG_STDOUT

 	MAIL_FROM

 	MAIL_HOST

 	MAIL_PASS

 	MAIL_PORT

 	MAIL_USER

 	MEMDEBUG_ENABLED

 	MEMDEBUG_NOTIFY

 	MEMUSAGE_ENABLED

 	MEMUSAGE_LIMIT_MB

 	MEMUSAGE_NOTIFY_MAIL

 	MEMUSAGE_REPORT

 	MEMUSAGE_WARNING_MB

 	NEWSPIDER_MODULE

 	RANDOMIZE_DOWNLOAD_DELAY

 	REDIRECT_MAX_METAREFRESH_DELAY

 	REDIRECT_MAX_TIMES

 	REDIRECT_PRIORITY_ADJUST

 	ROBOTSTXT_OBEY

 	SCHEDULER

 	SCHEDULER_MIDDLEWARES

 	SCHEDULER_MIDDLEWARES_BASE

 	SCHEDULER_ORDER

 	SPIDER_MIDDLEWARES

 	SPIDER_MIDDLEWARES_BASE

 	SPIDER_MODULES

 	SQLITE_DB

 	STATSMAILER_RCPTS

 	STATS_CLASS

 	STATS_DUMP

 	STATS_ENABLED

 	STATS_SDB_ASYNC

 	STATS_SDB_DOMAIN

 	TELNETCONSOLE_ENABLED

 	TELNETCONSOLE_HOST

 	TELNETCONSOLE_PORT, [1]

 	TEMPLATES_DIR

 	URLLENGTH_LIMIT

 	USER_AGENT

 	WEBSERVICE_ENABLED

 	WEBSERVICE_HOST

 	WEBSERVICE_LOGFILE

 	WEBSERVICE_PORT

 	
 settings

 	

 	command

 	Settings (class in scrapy.conf)

 	SgmlLinkExtractor (class in scrapy.contrib.linkextractors.sgml)

 	SgmlRequestExtractor (class in scrapy.contrib_exp.crawlspider.reqext)

 	
 shell

 	

 	command

 	
 signal

 	

 	engine_started

 	engine_stopped

 	item_dropped

 	item_passed

 	item_scraped

 	mail_sent

 	request_received

 	response_downloaded

 	response_received

 	spider_closed

 	spider_idle

 	spider_opened

 	stats_spider_closed

 	stats_spider_closing

 	stats_spider_opened

 	update_telnet_vars

 	SimpledbStatsCollector (class in scrapy.contrib.statscol)

 	
 spider_closed

 	

 	signal

 	spider_closed() (in module scrapy.signals)

 	
 spider_idle

 	

 	signal

 	spider_idle() (in module scrapy.signals)

 	
 SPIDER_MIDDLEWARES

 	

 	setting

 	
 SPIDER_MIDDLEWARES_BASE

 	

 	setting

 	
 SPIDER_MODULES

 	

 	setting

 	
 spider_opened

 	

 	signal

 	spider_opened() (in module scrapy.signals)

 	spider_stats (scrapy.statscol.MemoryStatsCollector attribute)

 	SpiderMiddleware (class in scrapy.contrib.spidermiddleware)

 	
 SQLITE_DB

 	

 	setting

 	start() (in module scrapy.log)

 	start_exporting() (scrapy.contrib.exporter.BaseItemExporter method)

 	start_requests() (scrapy.spider.BaseSpider method)

 	start_urls (scrapy.spider.BaseSpider attribute)

 	started (in module scrapy.log)

 	
 startproject

 	

 	command

 	
 STATS_CLASS

 	

 	setting

 	
 STATS_DUMP

 	

 	setting

 	
 STATS_ENABLED

 	

 	setting

 	
 STATS_SDB_ASYNC

 	

 	setting

 	
 STATS_SDB_DOMAIN

 	

 	setting

 	
 stats_spider_closed

 	

 	signal

 	stats_spider_closed() (in module scrapy.signals)

 	
 stats_spider_closing

 	

 	signal

 	stats_spider_closing() (in module scrapy.signals)

 	
 stats_spider_opened

 	

 	signal

 	stats_spider_opened() (in module scrapy.signals)

 	StatsCollector (class in scrapy.statscol)

 	
 STATSMAILER_RCPTS

 	

 	setting

 	StatsResource (class in scrapy.contrib.webservice.stats)

 	status (scrapy.http.Response attribute)

T

 	

 	TakeFirst (class in scrapy.contrib.loader.processor)

 	
 TELNETCONSOLE_ENABLED

 	

 	setting

 	
 TELNETCONSOLE_HOST

 	

 	setting

 	

 	
 TELNETCONSOLE_PORT

 	

 	setting, [1]

 	
 TEMPLATES_DIR

 	

 	setting

 	TextResponse (class in scrapy.http)

U

 	

 	Unique (class in scrapy.contrib_exp.crawlspider.reqproc)

 	
 update_telnet_vars

 	

 	signal

 	update_telnet_vars() (in module scrapy.telnet)

 	url (scrapy.http.Request attribute)

 	

 	(scrapy.http.Response attribute)

 	
 URLLENGTH_LIMIT

 	

 	setting

 	UrlLengthMiddleware (class in scrapy.contrib.spidermiddleware.urllength)

 	

 	UrlListMatcher (class in scrapy.contrib_exp.crawlspider.matchers)

 	UrlMatcher (class in scrapy.contrib_exp.crawlspider.matchers)

 	UrlRegexMatcher (class in scrapy.contrib_exp.crawlspider.matchers)

 	
 USER_AGENT

 	

 	setting

 	UserAgentMiddleware (class in scrapy.contrib.downloadermiddleware.useragent)

V

 	

 	
 version

 	

 	command

 	

 	
 view

 	

 	command

W

 	

 	WARNING (in module scrapy.log)

 	
 WEBSERVICE_ENABLED

 	

 	setting

 	
 WEBSERVICE_HOST

 	

 	setting

 	

 	
 WEBSERVICE_LOGFILE

 	

 	setting

 	
 WEBSERVICE_PORT

 	

 	setting

 	ws_name (scrapy.contrib.webservice.enginestatus.scrapy.webservice.JsonResource attribute)

X

 	

 	XMLFeedSpider (class in scrapy.contrib.spiders)

 	XmlItemExporter (class in scrapy.contrib.exporter)

 	XmlResponse (class in scrapy.http)

 	XmlXPathSelector (class in scrapy.selector)

 	

 	XPathItemLoader (class in scrapy.contrib.loader)

 	XPathRequestExtractor (class in scrapy.contrib_exp.crawlspider.reqext)

 	XPathSelector (class in scrapy.selector)

 	XPathSelectorList (class in scrapy.selector)

 Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

 _static/comment.png

_images/firebug3.png
web Pages n Google PageRank order View in alph

J— - hit hon.chy

Guides ay peraons and non-mecical usere and medial practiioners to useful and refiable orline medical and health inforation. Provid
J— - hitg bbe.co.ukfhealthy

Features current news plus archives, guides by subject, "Ask a Doctor® inquiry feature, a searchable conditions database, message boar
—_ - hit aolhealth.com

Find advice, information about diseases and drugs, fitness tips, and news items.

#" Inspect Edit ' td < tr < thody < table < form < body < html

HTML] CSS Script DOM Net Options -
® oo o o o
= 100+ o 1 o
o top!
http:/ /s, google. con/intl/en/dirhelp. htwl #pagerank

Done

[<Htnl¥Pathselec td[descendant ahref, “spagerank”)]]/following-sibling
<HtnLxPathselec ath=//td[descendant ahref, “#pagerank”)]]/following-sibling
<HinLxPathselec ath=//td[descendant ahref, “#pagerank”)]]/following-sibling
td[descendant ahref, “#pagerank”)]]/following-sibling
td[descendant ahref, “#pagerank”)]]/following-sibling
‘tdldescendant :alcontains (ahref, "#pagerank”)]1/following-sibling

ntains (ehref, "#pagerank”)1]/following-sibling: :td//a") . extra

webnd. con/">NebMD</a
hon.ch/">Health On the Net Foundations
0. uk/health Health'
Thealth, con Health<
intelihealth. con/">InteliHealth</a
. judgehealth.org.uk/">Judge: Web Sites for Healths

_static/plus.png

_images/firebug1.png
%" Inspect Edit 1 a<b<p < td<tr< thody < table < p < center < body < html

Console | HTML | CSS Script DOM _ Net

The web organized by topic into categories.

Arts Home Region
Movies, Music, Television, Consurmers, Homeowners, Family, Asia, Eurc
Business Kids and Teens Science
Industries, Finance, Jobs, Computers, Entertainment, School, Biology. P
Computers News Shoppi
Hardware, Internet, Software, ... Media, Newspapers, Current Events, ... Autos, Cle
Games Recreation Society
Board, Roleplaying, Video, Food, Outdoors, Travel, Issues, Pe
Health Reference Sports
Alternative, Fitness, Medicin Education, Libraries, Maps, Basketbal

<>
ps
ps
[P,
B <>

<font size

</p>

<

hitp://www.google.com/Top/Health/

_static/down.png

_static/comment-close.png

_images/scrapy_architecture.png
Scheduler
Middlewares

Downloader
Middlewares

Spider
Middlewares Responses

Spiders

_static/file.png

_static/minus.png

_images/firebug2.png
tnvironmental Health (359) Products and shopping (61) Weignt Loss (357)
Eitness (s61) Professions (1692) Women's Heailth (764)

Healthcare Industry (6380)

Related Categories:
Business > Business Services > Consulting > Medical and Life Sciences (321)
Kids and Teens > Health (1150)

Recreation > Humor > Medical (26)
Science > Social Sciences > Communication > Health Communication (3)

Shopping > Health (7391)
Society > Issues > Health (2592)

— Health On the Net Foundation - http:/www.hon.ch/
Guides lay persons and non-medical users and medical practitioners to useful and reliable online medical and health informat
f— BBC Health - http:/www.bbe.co.ukihealth/

Features current news plus archives, guides by subject, "Ask a Doctor® inquiry feature, a searchable conditions database, me
AOQI Health - httn i

Anlhealth com!

Inspect Edit + a < font < td < tr < thody < table < form < body < htm

Console | HTML | Cs5 _ Script _DOM et

Ererante wigTh="TI TrspacIng= Cepaman poraer=
& <tbody>
B <tr valign="top">
B <td width="g%">
& <td>

5 <font_face="

 A health resources for consumers, physicians, nurses, and educators. Includes
foruns, health quizzes and consumer product updates.
font

Done

_static/up-pressed.png

_static/selectors-sample1.html

 Name: My image 1
[image:]
 Name: My image 2
[image:]
 Name: My image 3
[image:]
 Name: My image 4
[image:]
 Name: My image 5
[image:]

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		Scrapy 0.12.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2008-2011, Insophia.
 Last updated on May 12, 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

