
Scrapy Documentation
Release 0.18.4

Scrapy developers

May 12, 2016

Contents

1 Getting help 3

2 First steps 5
2.1 Scrapy at a glance . 5
2.2 Installation guide . 8
2.3 Scrapy Tutorial . 10
2.4 Examples . 16

3 Basic concepts 19
3.1 Command line tool . 19
3.2 Items . 26
3.3 Spiders . 30
3.4 Link Extractors . 38
3.5 Selectors . 40
3.6 Item Loaders . 46
3.7 Scrapy shell . 54
3.8 Item Pipeline . 57
3.9 Feed exports . 59

4 Built-in services 65
4.1 Logging . 65
4.2 Stats Collection . 67
4.3 Sending e-mail . 68
4.4 Telnet Console . 70
4.5 Web Service . 72

5 Solving specific problems 79
5.1 Frequently Asked Questions . 79
5.2 Debugging Spiders . 83
5.3 Spiders Contracts . 86
5.4 Common Practices . 87
5.5 Broad Crawls . 89
5.6 Using Firefox for scraping . 91
5.7 Using Firebug for scraping . 92
5.8 Debugging memory leaks . 96
5.9 Downloading Item Images . 100
5.10 Ubuntu packages . 105
5.11 Scrapyd . 106

i

5.12 AutoThrottle extension . 106
5.13 Benchmarking . 107
5.14 Jobs: pausing and resuming crawls . 108
5.15 DjangoItem . 110

6 Extending Scrapy 113
6.1 Architecture overview . 113
6.2 Downloader Middleware . 115
6.3 Spider Middleware . 124
6.4 Extensions . 128
6.5 Core API . 133

7 Reference 139
7.1 Requests and Responses . 139
7.2 Settings . 146
7.3 Signals . 157
7.4 Exceptions . 160
7.5 Item Exporters . 161

8 All the rest 169
8.1 Release notes . 169
8.2 Contributing to Scrapy . 183
8.3 Versioning and API Stability . 185
8.4 Experimental features . 186

Python Module Index 187

ii

Scrapy Documentation, Release 0.18.4

This documentation contains everything you need to know about Scrapy.

Contents 1

Scrapy Documentation, Release 0.18.4

2 Contents

CHAPTER 1

Getting help

Having trouble? We’d like to help!

• Try the FAQ – it’s got answers to some common questions.

• Looking for specific information? Try the genindex or modindex.

• Search for information in the archives of the scrapy-users mailing list, or post a question.

• Ask a question in the #scrapy IRC channel.

• Report bugs with Scrapy in our issue tracker.

3

http://groups.google.com/group/scrapy-users/
http://groups.google.com/group/scrapy-users/
https://github.com/scrapy/scrapy/issues

Scrapy Documentation, Release 0.18.4

4 Chapter 1. Getting help

CHAPTER 2

First steps

2.1 Scrapy at a glance

Scrapy is an application framework for crawling web sites and extracting structured data which can be used for a wide
range of useful applications, like data mining, information processing or historical archival.

Even though Scrapy was originally designed for screen scraping (more precisely, web scraping), it can also be used to
extract data using APIs (such as Amazon Associates Web Services) or as a general purpose web crawler.

The purpose of this document is to introduce you to the concepts behind Scrapy so you can get an idea of how it works
and decide if Scrapy is what you need.

When you’re ready to start a project, you can start with the tutorial.

2.1.1 Pick a website

So you need to extract some information from a website, but the website doesn’t provide any API or mechanism to
access that info programmatically. Scrapy can help you extract that information.

Let’s say we want to extract the URL, name, description and size of all torrent files added today in the Mininova site.

The list of all torrents added today can be found on this page:

http://www.mininova.org/today

2.1.2 Define the data you want to scrape

The first thing is to define the data we want to scrape. In Scrapy, this is done through Scrapy Items (Torrent files, in
this case).

This would be our Item:

from scrapy.item import Item, Field

class TorrentItem(Item):
url = Field()
name = Field()
description = Field()
size = Field()

5

http://en.wikipedia.org/wiki/Screen_scraping
http://en.wikipedia.org/wiki/Web_scraping
http://aws.amazon.com/associates/
http://www.mininova.org
http://www.mininova.org/today

Scrapy Documentation, Release 0.18.4

2.1.3 Write a Spider to extract the data

The next thing is to write a Spider which defines the start URL (http://www.mininova.org/today), the rules for follow-
ing links and the rules for extracting the data from pages.

If we take a look at that page content we’ll see that all torrent URLs are like http://www.mininova.org/tor/NUMBER
where NUMBER is an integer. We’ll use that to construct the regular expression for the links to follow: /tor/\d+.

We’ll use XPath for selecting the data to extract from the web page HTML source. Let’s take one of those torrent
pages:

http://www.mininova.org/tor/2657665

And look at the page HTML source to construct the XPath to select the data we want which is: torrent name, description
and size.

By looking at the page HTML source we can see that the file name is contained inside a <h1> tag:

<h1>Home[2009][Eng]XviD-ovd</h1>

An XPath expression to extract the name could be:

//h1/text()

And the description is contained inside a <div> tag with id="description":

<h2>Description:</h2>

<div id="description">
"HOME" - a documentary film by Yann Arthus-Bertrand

"We are living in exceptional times. Scientists tell us that we have 10 years to change the way we live, avert the depletion of natural resources and the catastrophic evolution of the Earth's climate.

...

An XPath expression to select the description could be:

//div[@id='description']

Finally, the file size is contained in the second <p> tag inside the <div> tag with id=specifications:

<div id="specifications">

<p>
Category:
Movies > Documentary
</p>

<p>
Total size:
699.79 megabyte</p>

An XPath expression to select the file size could be:

//div[@id='specifications']/p[2]/text()[2]

For more information about XPath see the XPath reference.

6 Chapter 2. First steps

http://www.mininova.org/today
http://www.mininova.org/tor/NUMBER
http://www.w3.org/TR/xpath
http://www.mininova.org/tor/2657665
http://www.w3.org/TR/xpath

Scrapy Documentation, Release 0.18.4

Finally, here’s the spider code:

class MininovaSpider(CrawlSpider):

name = 'mininova.org'
allowed_domains = ['mininova.org']
start_urls = ['http://www.mininova.org/today']
rules = [Rule(SgmlLinkExtractor(allow=['/tor/\d+']), 'parse_torrent')]

def parse_torrent(self, response):
x = HtmlXPathSelector(response)

torrent = TorrentItem()
torrent['url'] = response.url
torrent['name'] = x.select("//h1/text()").extract()
torrent['description'] = x.select("//div[@id='description']").extract()
torrent['size'] = x.select("//div[@id='info-left']/p[2]/text()[2]").extract()
return torrent

For brevity’s sake, we intentionally left out the import statements. The Torrent item is defined above.

2.1.4 Run the spider to extract the data

Finally, we’ll run the spider to crawl the site an output file scraped_data.json with the scraped data in JSON
format:

scrapy crawl mininova.org -o scraped_data.json -t json

This uses feed exports to generate the JSON file. You can easily change the export format (XML or CSV, for example)
or the storage backend (FTP or Amazon S3, for example).

You can also write an item pipeline to store the items in a database very easily.

2.1.5 Review scraped data

If you check the scraped_data.json file after the process finishes, you’ll see the scraped items there:

[{"url": "http://www.mininova.org/tor/2657665", "name": ["Home[2009][Eng]XviD-ovd"], "description": ["HOME - a documentary film by ..."], "size": ["699.69 megabyte"]},
... other items ...
]

You’ll notice that all field values (except for the url which was assigned directly) are actually lists. This is because
the selectors return lists. You may want to store single values, or perform some additional parsing/cleansing to the
values. That’s what Item Loaders are for.

2.1.6 What else?

You’ve seen how to extract and store items from a website using Scrapy, but this is just the surface. Scrapy provides a
lot of powerful features for making scraping easy and efficient, such as:

• Built-in support for selecting and extracting data from HTML and XML sources

• Built-in support for cleaning and sanitizing the scraped data using a collection of reusable filters (called Item
Loaders) shared between all the spiders.

• Built-in support for generating feed exports in multiple formats (JSON, CSV, XML) and storing them in multiple
backends (FTP, S3, local filesystem)

2.1. Scrapy at a glance 7

http://aws.amazon.com/s3/

Scrapy Documentation, Release 0.18.4

• A media pipeline for automatically downloading images (or any other media) associated with the scraped items

• Support for extending Scrapy by plugging your own functionality using signals and a well-defined API (mid-
dlewares, extensions, and pipelines).

• Wide range of built-in middlewares and extensions for:

– cookies and session handling

– HTTP compression

– HTTP authentication

– HTTP cache

– user-agent spoofing

– robots.txt

– crawl depth restriction

– and more

• Robust encoding support and auto-detection, for dealing with foreign, non-standard and broken encoding dec-
larations.

• Support for creating spiders based on pre-defined templates, to speed up spider creation and make their code
more consistent on large projects. See genspider command for more details.

• Extensible stats collection for multiple spider metrics, useful for monitoring the performance of your spiders
and detecting when they get broken

• An Interactive shell console for trying XPaths, very useful for writing and debugging your spiders

• A System service designed to ease the deployment and run of your spiders in production.

• A built-in Web service for monitoring and controlling your bot

• A Telnet console for hooking into a Python console running inside your Scrapy process, to introspect and debug
your crawler

• Logging facility that you can hook on to for catching errors during the scraping process.

• Support for crawling based on URLs discovered through Sitemaps

• A caching DNS resolver

2.1.7 What’s next?

The next obvious steps are for you to download Scrapy, read the tutorial and join the community. Thanks for your
interest!

2.2 Installation guide

2.2.1 Pre-requisites

The installation steps assume that you have the following things installed:

• Python 2.6 or 2.7

• OpenSSL. This comes preinstalled in all operating systems except Windows (see Platform specific installation
notes)

8 Chapter 2. First steps

http://www.sitemaps.org
http://scrapy.org/download/
http://scrapy.org/community/

Scrapy Documentation, Release 0.18.4

• pip or easy_install Python package managers

2.2.2 Installing Scrapy

You can install Scrapy using easy_install or pip (which is the canonical way to distribute and install Python packages).

Note: Check Platform specific installation notes first.

To install using pip:

pip install Scrapy

To install using easy_install:

easy_install Scrapy

2.2.3 Platform specific installation notes

Windows

After installing Python, follow these steps before installing Scrapy:

• add the C:\python27\Scripts and C:\python27 folders to the system path by adding those directories
to the PATH environment variable from the Control Panel.

• install OpenSSL by following these steps:

1. go to Win32 OpenSSL page

2. download Visual C++ 2008 redistributables for your Windows and architecture

3. download OpenSSL for your Windows and architecture (the regular version, not the light one)

4. add the c:\openssl-win32\bin (or similar) directory to your PATH, the same way you added
python27 in the first step‘‘ in the first step

• some binary packages that Scrapy depends on (like Twisted, lxml and pyOpenSSL) require a compiler available
to install, and fail if you don’t have Visual Studio installed. You can find Windows installers for those in the
following links. Make sure you respect your Python version and Windows architecture.

– pywin32: http://sourceforge.net/projects/pywin32/files/

– Twisted: http://twistedmatrix.com/trac/wiki/Downloads

– zope.interface: download the egg from zope.interface pypi page and install it by running easy_install
file.egg

– lxml: http://pypi.python.org/pypi/lxml/

– pyOpenSSL: https://launchpad.net/pyopenssl

Finally, this page contains many precompiled Python binary libraries, which may come handy to fulfill Scrapy depen-
dencies:

http://www.lfd.uci.edu/~gohlke/pythonlibs/

2.2. Installation guide 9

http://www.pip-installer.org/en/latest/installing.html
http://pypi.python.org/pypi/setuptools
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/sysdm_advancd_environmnt_addchange_variable.mspx
http://slproweb.com/products/Win32OpenSSL.html
http://sourceforge.net/projects/pywin32/files/
http://twistedmatrix.com/trac/wiki/Downloads
http://pypi.python.org/pypi/zope.interface
http://pypi.python.org/pypi/lxml/
https://launchpad.net/pyopenssl
http://www.lfd.uci.edu/~gohlke/pythonlibs/

Scrapy Documentation, Release 0.18.4

Ubuntu 9.10 or above

Don’t use the python-scrapy package provided by Ubuntu, they are typically too old and slow to catch up with
latest Scrapy.

Instead, use the official Ubuntu Packages, which already solve all dependencies for you and are continuously updated
with the latest bug fixes.

2.3 Scrapy Tutorial

In this tutorial, we’ll assume that Scrapy is already installed on your system. If that’s not the case, see Installation
guide.

We are going to use Open directory project (dmoz) as our example domain to scrape.

This tutorial will walk you through these tasks:

1. Creating a new Scrapy project

2. Defining the Items you will extract

3. Writing a spider to crawl a site and extract Items

4. Writing an Item Pipeline to store the extracted Items

Scrapy is written in Python. If you’re new to the language you might want to start by getting an idea of what the
language is like, to get the most out of Scrapy. If you’re already familiar with other languages, and want to learn
Python quickly, we recommend Learn Python The Hard Way. If you’re new to programming and want to start with
Python, take a look at this list of Python resources for non-programmers.

2.3.1 Creating a project

Before you start scraping, you will have set up a new Scrapy project. Enter a directory where you’d like to store your
code and then run:

scrapy startproject tutorial

This will create a tutorial directory with the following contents:

tutorial/
scrapy.cfg
tutorial/

__init__.py
items.py
pipelines.py
settings.py
spiders/

__init__.py
...

These are basically:

• scrapy.cfg: the project configuration file

• tutorial/: the project’s python module, you’ll later import your code from here.

• tutorial/items.py: the project’s items file.

• tutorial/pipelines.py: the project’s pipelines file.

10 Chapter 2. First steps

http://www.dmoz.org/
http://www.python.org
http://learnpythonthehardway.org/book/
http://wiki.python.org/moin/BeginnersGuide/NonProgrammers

Scrapy Documentation, Release 0.18.4

• tutorial/settings.py: the project’s settings file.

• tutorial/spiders/: a directory where you’ll later put your spiders.

2.3.2 Defining our Item

Items are containers that will be loaded with the scraped data; they work like simple python dicts but provide additional
protecting against populating undeclared fields, to prevent typos.

They are declared by creating an scrapy.item.Item class an defining its attributes as scrapy.item.Field
objects, like you will in an ORM (don’t worry if you’re not familiar with ORMs, you will see that this is an easy task).

We begin by modeling the item that we will use to hold the sites data obtained from dmoz.org, as we want to capture
the name, url and description of the sites, we define fields for each of these three attributes. To do that, we edit items.py,
found in the tutorial directory. Our Item class looks like this:

from scrapy.item import Item, Field

class DmozItem(Item):
title = Field()
link = Field()
desc = Field()

This may seem complicated at first, but defining the item allows you to use other handy components of Scrapy that
need to know how your item looks like.

2.3.3 Our first Spider

Spiders are user-written classes used to scrape information from a domain (or group of domains).

They define an initial list of URLs to download, how to follow links, and how to parse the contents of those pages to
extract items.

To create a Spider, you must subclass scrapy.spider.BaseSpider, and define the three main, mandatory,
attributes:

• name: identifies the Spider. It must be unique, that is, you can’t set the same name for different Spiders.

• start_urls: is a list of URLs where the Spider will begin to crawl from. So, the first pages downloaded
will be those listed here. The subsequent URLs will be generated successively from data contained in the start
URLs.

• parse() is a method of the spider, which will be called with the downloaded Response object of each start
URL. The response is passed to the method as the first and only argument.

This method is responsible for parsing the response data and extracting scraped data (as scraped items) and more
URLs to follow.

The parse() method is in charge of processing the response and returning scraped data (as Item objects) and
more URLs to follow (as Request objects).

This is the code for our first Spider; save it in a file named dmoz_spider.py under the tutorial/spiders
directory:

from scrapy.spider import BaseSpider

class DmozSpider(BaseSpider):
name = "dmoz"
allowed_domains = ["dmoz.org"]

2.3. Scrapy Tutorial 11

Scrapy Documentation, Release 0.18.4

start_urls = [
"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"

]

def parse(self, response):
filename = response.url.split("/")[-2]
open(filename, 'wb').write(response.body)

Crawling

To put our spider to work, go to the project’s top level directory and run:

scrapy crawl dmoz

The crawl dmoz command runs the spider for the dmoz.org domain. You will get an output similar to this:

2008-08-20 03:51:13-0300 [scrapy] INFO: Started project: dmoz
2008-08-20 03:51:13-0300 [tutorial] INFO: Enabled extensions: ...
2008-08-20 03:51:13-0300 [tutorial] INFO: Enabled downloader middlewares: ...
2008-08-20 03:51:13-0300 [tutorial] INFO: Enabled spider middlewares: ...
2008-08-20 03:51:13-0300 [tutorial] INFO: Enabled item pipelines: ...
2008-08-20 03:51:14-0300 [dmoz] INFO: Spider opened
2008-08-20 03:51:14-0300 [dmoz] DEBUG: Crawled <http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> (referer: <None>)
2008-08-20 03:51:14-0300 [dmoz] DEBUG: Crawled <http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: <None>)
2008-08-20 03:51:14-0300 [dmoz] INFO: Spider closed (finished)

Pay attention to the lines containing [dmoz], which corresponds to our spider. You can see a log line for each URL
defined in start_urls. Because these URLs are the starting ones, they have no referrers, which is shown at the end
of the log line, where it says (referer: <None>).

But more interesting, as our parse method instructs, two files have been created: Books and Resources, with the
content of both URLs.

What just happened under the hood?

Scrapy creates scrapy.http.Request objects for each URL in the start_urls attribute of the Spider, and
assigns them the parse method of the spider as their callback function.

These Requests are scheduled, then executed, and scrapy.http.Response objects are returned and then fed
back to the spider, through the parse() method.

Extracting Items

Introduction to Selectors

There are several ways to extract data from web pages. Scrapy uses a mechanism based on XPath expressions called
XPath selectors. For more information about selectors and other extraction mechanisms see the XPath selectors docu-
mentation.

Here are some examples of XPath expressions and their meanings:

• /html/head/title: selects the <title> element, inside the <head> element of a HTML document

• /html/head/title/text(): selects the text inside the aforementioned <title> element.

12 Chapter 2. First steps

http://www.w3.org/TR/xpath

Scrapy Documentation, Release 0.18.4

• //td: selects all the <td> elements

• //div[@class="mine"]: selects all div elements which contain an attribute class="mine"

These are just a couple of simple examples of what you can do with XPath, but XPath expressions are indeed much
more powerful. To learn more about XPath we recommend this XPath tutorial.

For working with XPaths, Scrapy provides a XPathSelector class, which comes in two flavours,
HtmlXPathSelector (for HTML data) and XmlXPathSelector (for XML data). In order to use them you
must instantiate the desired class with a Response object.

You can see selectors as objects that represent nodes in the document structure. So, the first instantiated selectors are
associated to the root node, or the entire document.

Selectors have three methods (click on the method to see the complete API documentation).

• select(): returns a list of selectors, each of them representing the nodes selected by the xpath expression
given as argument.

• extract(): returns a unicode string with the data selected by the XPath selector.

• re(): returns a list of unicode strings extracted by applying the regular expression given as argument.

Trying Selectors in the Shell

To illustrate the use of Selectors we’re going to use the built-in Scrapy shell, which also requires IPython (an extended
Python console) installed on your system.

To start a shell, you must go to the project’s top level directory and run:

scrapy shell http://www.dmoz.org/Computers/Programming/Languages/Python/Books/

This is what the shell looks like:

[... Scrapy log here ...]

[s] Available Scrapy objects:
[s] 2010-08-19 21:45:59-0300 [default] INFO: Spider closed (finished)
[s] hxs <HtmlXPathSelector (http://www.dmoz.org/Computers/Programming/Languages/Python/Books/) xpath=None>
[s] item Item()
[s] request <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s] response <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s] spider <BaseSpider 'default' at 0x1b6c2d0>
[s] xxs <XmlXPathSelector (http://www.dmoz.org/Computers/Programming/Languages/Python/Books/) xpath=None>
[s] Useful shortcuts:
[s] shelp() Print this help
[s] fetch(req_or_url) Fetch a new request or URL and update shell objects
[s] view(response) View response in a browser

In [1]:

After the shell loads, you will have the response fetched in a local response variable, so if you type
response.body you will see the body of the response, or you can type response.headers to see its head-
ers.

The shell also instantiates two selectors, one for HTML (in the hxs variable) and one for XML (in the xxs variable)
with this response. So let’s try them:

In [1]: hxs.select('//title')
Out[1]: [<HtmlXPathSelector (title) xpath=//title>]

2.3. Scrapy Tutorial 13

http://www.w3schools.com/XPath/default.asp

Scrapy Documentation, Release 0.18.4

In [2]: hxs.select('//title').extract()
Out[2]: [u'<title>Open Directory - Computers: Programming: Languages: Python: Books</title>']

In [3]: hxs.select('//title/text()')
Out[3]: [<HtmlXPathSelector (text) xpath=//title/text()>]

In [4]: hxs.select('//title/text()').extract()
Out[4]: [u'Open Directory - Computers: Programming: Languages: Python: Books']

In [5]: hxs.select('//title/text()').re('(\w+):')
Out[5]: [u'Computers', u'Programming', u'Languages', u'Python']

Extracting the data

Now, let’s try to extract some real information from those pages.

You could type response.body in the console, and inspect the source code to figure out the XPaths you need to
use. However, inspecting the raw HTML code there could become a very tedious task. To make this an easier task,
you can use some Firefox extensions like Firebug. For more information see Using Firebug for scraping and Using
Firefox for scraping.

After inspecting the page source, you’ll find that the web sites information is inside a element, in fact the second
 element.

So we can select each element belonging to the sites list with this code:

hxs.select('//ul/li')

And from them, the sites descriptions:

hxs.select('//ul/li/text()').extract()

The sites titles:

hxs.select('//ul/li/a/text()').extract()

And the sites links:

hxs.select('//ul/li/a/@href').extract()

As we said before, each select() call returns a list of selectors, so we can concatenate further select() calls to
dig deeper into a node. We are going to use that property here, so:

sites = hxs.select('//ul/li')
for site in sites:

title = site.select('a/text()').extract()
link = site.select('a/@href').extract()
desc = site.select('text()').extract()
print title, link, desc

Note: For a more detailed description of using nested selectors, see Nesting selectors and Working with relative
XPaths in the Selectors documentation

Let’s add this code to our spider:

from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector

14 Chapter 2. First steps

Scrapy Documentation, Release 0.18.4

class DmozSpider(BaseSpider):
name = "dmoz"
allowed_domains = ["dmoz.org"]
start_urls = [

"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"

]

def parse(self, response):
hxs = HtmlXPathSelector(response)
sites = hxs.select('//ul/li')
for site in sites:

title = site.select('a/text()').extract()
link = site.select('a/@href').extract()
desc = site.select('text()').extract()
print title, link, desc

Now try crawling the dmoz.org domain again and you’ll see sites being printed in your output, run:

scrapy crawl dmoz

Using our item

Item objects are custom python dicts; you can access the values of their fields (attributes of the class we defined
earlier) using the standard dict syntax like:

>>> item = DmozItem()
>>> item['title'] = 'Example title'
>>> item['title']
'Example title'

Spiders are expected to return their scraped data inside Item objects. So, in order to return the data we’ve scraped so
far, the final code for our Spider would be like this:

from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector

from tutorial.items import DmozItem

class DmozSpider(BaseSpider):
name = "dmoz"
allowed_domains = ["dmoz.org"]
start_urls = [

"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"

]

def parse(self, response):
hxs = HtmlXPathSelector(response)
sites = hxs.select('//ul/li')
items = []
for site in sites:

item = DmozItem()
item['title'] = site.select('a/text()').extract()
item['link'] = site.select('a/@href').extract()
item['desc'] = site.select('text()').extract()

2.3. Scrapy Tutorial 15

Scrapy Documentation, Release 0.18.4

items.append(item)
return items

Note: You can find a fully-functional variant of this spider in the dirbot project available at
https://github.com/scrapy/dirbot

Now doing a crawl on the dmoz.org domain yields DmozItem‘s:

[dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
{'desc': [u' - By David Mertz; Addison Wesley. Book in progress, full text, ASCII format. Asks for feedback. [author website, Gnosis Software, Inc.\n],
'link': [u'http://gnosis.cx/TPiP/'],
'title': [u'Text Processing in Python']}

[dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
{'desc': [u' - By Sean McGrath; Prentice Hall PTR, 2000, ISBN 0130211192, has CD-ROM. Methods to build XML applications fast, Python tutorial, DOM and SAX, new Pyxie open source XML processing library. [Prentice Hall PTR]\n'],
'link': [u'http://www.informit.com/store/product.aspx?isbn=0130211192'],
'title': [u'XML Processing with Python']}

2.3.4 Storing the scraped data

The simplest way to store the scraped data is by using the Feed exports, with the following command:

scrapy crawl dmoz -o items.json -t json

That will generate a items.json file containing all scraped items, serialized in JSON.

In small projects (like the one in this tutorial), that should be enough. However, if you want to perform more complex
things with the scraped items, you can write an Item Pipeline. As with Items, a placeholder file for Item Pipelines
has been set up for you when the project is created, in tutorial/pipelines.py. Though you don’t need to
implement any item pipeline if you just want to store the scraped items.

2.3.5 Next steps

This tutorial covers only the basics of Scrapy, but there’s a lot of other features not mentioned here. Check the What
else? section in Scrapy at a glance chapter for a quick overview of the most important ones.

Then, we recommend you continue by playing with an example project (see Examples), and then continue with the
section Basic concepts.

2.4 Examples

The best way to learn is with examples, and Scrapy is no exception. For this reason, there is an example Scrapy project
named dirbot, that you can use to play and learn more about Scrapy. It contains the dmoz spider described in the
tutorial.

This dirbot project is available at: https://github.com/scrapy/dirbot

It contains a README file with a detailed description of the project contents.

If you’re familiar with git, you can checkout the code. Otherwise you can download a tarball or zip file of the project
by clicking on Downloads.

The scrapy tag on Snipplr is used for sharing code snippets such as spiders, middlewares, extensions, or scripts. Feel
free (and encouraged!) to share any code there.

16 Chapter 2. First steps

https://github.com/scrapy/dirbot
https://github.com/scrapy/dirbot
http://en.wikipedia.org/wiki/JSON
https://github.com/scrapy/dirbot
https://github.com/scrapy/dirbot
https://github.com/scrapy/dirbot
https://github.com/scrapy/dirbot/archives/master
http://snipplr.com/all/tags/scrapy/

Scrapy Documentation, Release 0.18.4

Scrapy at a glance Understand what Scrapy is and how it can help you.

Installation guide Get Scrapy installed on your computer.

Scrapy Tutorial Write your first Scrapy project.

Examples Learn more by playing with a pre-made Scrapy project.

2.4. Examples 17

Scrapy Documentation, Release 0.18.4

18 Chapter 2. First steps

CHAPTER 3

Basic concepts

3.1 Command line tool

New in version 0.10.

Scrapy is controlled through the scrapy command-line tool, to be referred here as the “Scrapy tool” to differentiate
it from their sub-commands which we just call “commands”, or “Scrapy commands”.

The Scrapy tool provides several commands, for multiple purposes, and each one accepts a different set of arguments
and options.

3.1.1 Default structure of Scrapy projects

Before delving into the command-line tool and its sub-commands, let’s first understand the directory structure of a
Scrapy project.

Even thought it can be modified, all Scrapy projects have the same file structure by default, similar to this:

scrapy.cfg
myproject/

__init__.py
items.py
pipelines.py
settings.py
spiders/

__init__.py
spider1.py
spider2.py
...

The directory where the scrapy.cfg file resides is known as the project root directory. That file contains the name
of the python module that defines the project settings. Here is an example:

[settings]
default = myproject.settings

3.1.2 Using the scrapy tool

You can start by running the Scrapy tool with no arguments and it will print some usage help and the available
commands:

19

Scrapy Documentation, Release 0.18.4

Scrapy X.Y - no active project

Usage:
scrapy <command> [options] [args]

Available commands:
crawl Start crawling a spider or URL
fetch Fetch a URL using the Scrapy downloader

[...]

The first line will print the currently active project, if you’re inside a Scrapy project. In this, it was run from outside a
project. If run from inside a project it would have printed something like this:

Scrapy X.Y - project: myproject

Usage:
scrapy <command> [options] [args]

[...]

Creating projects

The first thing you typically do with the scrapy tool is create your Scrapy project:

scrapy startproject myproject

That will create a Scrapy project under the myproject directory.

Next, you go inside the new project directory:

cd myproject

And you’re ready to use use the scrapy command to manage and control your project from there.

Controlling projects

You use the scrapy tool from inside your projects to control and manage them.

For example, to create a new spider:

scrapy genspider mydomain mydomain.com

Some Scrapy commands (like crawl) must be run from inside a Scrapy project. See the commands reference below
for more information on which commands must be run from inside projects, and which not.

Also keep in mind that some commands may have slightly different behaviours when running them from inside
projects. For example, the fetch command will use spider-overridden behaviours (such as the user_agent attribute
to override the user-agent) if the url being fetched is associated with some specific spider. This is intentional, as the
fetch command is meant to be used to check how spiders are downloading pages.

3.1.3 Available tool commands

This section contains a list of the available built-in commands with a description and some usage examples. Remember
you can always get more info about each command by running:

20 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

scrapy <command> -h

And you can see all available commands with:

scrapy -h

There are two kinds of commands, those that only work from inside a Scrapy project (Project-specific commands) and
those that also work without an active Scrapy project (Global commands), though they may behave slightly different
when running from inside a project (as they would use the project overridden settings).

Global commands:

• startproject

• settings

• runspider

• shell

• fetch

• view

• version

Project-only commands:

• crawl

• check

• list

• edit

• parse

• genspider

• server

• deploy

• bench

startproject

• Syntax: scrapy startproject <project_name>

• Requires project: no

Creates a new Scrapy project named project_name, under the project_name directory.

Usage example:

$ scrapy startproject myproject

genspider

• Syntax: scrapy genspider [-t template] <name> <domain>

• Requires project: yes

3.1. Command line tool 21

Scrapy Documentation, Release 0.18.4

Create a new spider in the current project.

This is just a convenient shortcut command for creating spiders based on pre-defined templates, but certainly not the
only way to create spiders. You can just create the spider source code files yourself, instead of using this command.

Usage example:

$ scrapy genspider -l
Available templates:

basic
crawl
csvfeed
xmlfeed

$ scrapy genspider -d basic
from scrapy.spider import BaseSpider

class $classname(BaseSpider):
name = "$name"
allowed_domains = ["$domain"]
start_urls = (

'http://www.$domain/',
)

def parse(self, response):
pass

$ scrapy genspider -t basic example example.com
Created spider 'example' using template 'basic' in module:

mybot.spiders.example

crawl

• Syntax: scrapy crawl <spider>

• Requires project: yes

Start crawling a spider.

Usage examples:

$ scrapy crawl myspider
[... myspider starts crawling ...]

check

• Syntax: scrapy check [-l] <spider>

• Requires project: yes

Run contract checks.

Usage examples:

$ scrapy check -l
first_spider

* parse

* parse_item
second_spider

22 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

* parse

* parse_item

$ scrapy check
[FAILED] first_spider:parse_item
>>> 'RetailPricex' field is missing

[FAILED] first_spider:parse
>>> Returned 92 requests, expected 0..4

list

• Syntax: scrapy list

• Requires project: yes

List all available spiders in the current project. The output is one spider per line.

Usage example:

$ scrapy list
spider1
spider2

edit

• Syntax: scrapy edit <spider>

• Requires project: yes

Edit the given spider using the editor defined in the EDITOR setting.

This command is provided only as a convenient shortcut for the most common case, the developer is of course free to
choose any tool or IDE to write and debug his spiders.

Usage example:

$ scrapy edit spider1

fetch

• Syntax: scrapy fetch <url>

• Requires project: no

Downloads the given URL using the Scrapy downloader and writes the contents to standard output.

The interesting thing about this command is that it fetches the page how the the spider would download it. For example,
if the spider has an USER_AGENT attribute which overrides the User Agent, it will use that one.

So this command can be used to “see” how your spider would fetch certain page.

If used outside a project, no particular per-spider behaviour would be applied and it will just use the default Scrapy
downloder settings.

Usage examples:

3.1. Command line tool 23

Scrapy Documentation, Release 0.18.4

$ scrapy fetch --nolog http://www.example.com/some/page.html
[... html content here ...]

$ scrapy fetch --nolog --headers http://www.example.com/
{'Accept-Ranges': ['bytes'],
'Age': ['1263 '],
'Connection': ['close '],
'Content-Length': ['596'],
'Content-Type': ['text/html; charset=UTF-8'],
'Date': ['Wed, 18 Aug 2010 23:59:46 GMT'],
'Etag': ['"573c1-254-48c9c87349680"'],
'Last-Modified': ['Fri, 30 Jul 2010 15:30:18 GMT'],
'Server': ['Apache/2.2.3 (CentOS)']}

view

• Syntax: scrapy view <url>

• Requires project: no

Opens the given URL in a browser, as your Scrapy spider would “see” it. Sometimes spiders see pages differently
from regular users, so this can be used to check what the spider “sees” and confirm it’s what you expect.

Usage example:

$ scrapy view http://www.example.com/some/page.html
[... browser starts ...]

shell

• Syntax: scrapy shell [url]

• Requires project: no

Starts the Scrapy shell for the given URL (if given) or empty if not URL is given. See Scrapy shell for more info.

Usage example:

$ scrapy shell http://www.example.com/some/page.html
[... scrapy shell starts ...]

parse

• Syntax: scrapy parse <url> [options]

• Requires project: yes

Fetches the given URL and parses with the spider that handles it, using the method passed with the --callback
option, or parse if not given.

Supported options:

• --callback or -c: spider method to use as callback for parsing the response

• --rules or -r: use CrawlSpider rules to discover the callback (ie. spider method) to use for parsing the
response

• --noitems: don’t show scraped items

24 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

• --nolinks: don’t show extracted links

• --depth or -d: depth level for which the requests should be followed recursively (default: 1)

• --verbose or -v: display information for each depth level

Usage example:

$ scrapy parse http://www.example.com/ -c parse_item
[... scrapy log lines crawling example.com spider ...]

>>> STATUS DEPTH LEVEL 1 <<<
Scraped Items --
[{'name': u'Example item',
'category': u'Furniture',
'length': u'12 cm'}]

Requests ---
[]

settings

• Syntax: scrapy settings [options]

• Requires project: no

Get the value of a Scrapy setting.

If used inside a project it’ll show the project setting value, otherwise it’ll show the default Scrapy value for that setting.

Example usage:

$ scrapy settings --get BOT_NAME
scrapybot
$ scrapy settings --get DOWNLOAD_DELAY
0

runspider

• Syntax: scrapy runspider <spider_file.py>

• Requires project: no

Run a spider self-contained in a Python file, without having to create a project.

Example usage:

$ scrapy runspider myspider.py
[... spider starts crawling ...]

version

• Syntax: scrapy version [-v]

• Requires project: no

Prints the Scrapy version. If used with -v it also prints Python, Twisted and Platform info, which is useful for bug
reports.

3.1. Command line tool 25

Scrapy Documentation, Release 0.18.4

deploy

New in version 0.11.

• Syntax: scrapy deploy [<target:project> | -l <target> | -L]

• Requires project: yes

Deploy the project into a Scrapyd server. See Deploying your project.

bench

New in version 0.17.

• Syntax: scrapy bench

• Requires project: no

Run quick benchmark test. Benchmarking.

3.1.4 Custom project commands

You can also add your custom project commands by using the COMMANDS_MODULE setting. See the Scrapy com-
mands in scrapy/commands for examples on how to implement your commands.

COMMANDS_MODULE

Default: ’’ (empty string)

A module to use for looking custom Scrapy commands. This is used to add custom commands for your Scrapy project.

Example:

COMMANDS_MODULE = 'mybot.commands'

3.2 Items

The main goal in scraping is to extract structured data from unstructured sources, typically, web pages. Scrapy provides
the Item class for this purpose.

Item objects are simple containers used to collect the scraped data. They provide a dictionary-like API with a
convenient syntax for declaring their available fields.

3.2.1 Declaring Items

Items are declared using a simple class definition syntax and Field objects. Here is an example:

from scrapy.item import Item, Field

class Product(Item):
name = Field()
price = Field()
stock = Field()
last_updated = Field(serializer=str)

26 Chapter 3. Basic concepts

http://scrapyd.readthedocs.org/en/latest/#deploying-your-project
https://github.com/scrapy/scrapy/blob/master/scrapy/commands
http://docs.python.org/library/stdtypes.html#dict

Scrapy Documentation, Release 0.18.4

Note: Those familiar with Django will notice that Scrapy Items are declared similar to Django Models, except that
Scrapy Items are much simpler as there is no concept of different field types.

3.2.2 Item Fields

Field objects are used to specify metadata for each field. For example, the serializer function for the
last_updated field illustrated in the example above.

You can specify any kind of metadata for each field. There is no restriction on the values accepted by Field objects.
For this same reason, there isn’t a reference list of all available metadata keys. Each key defined in Field objects
could be used by a different components, and only those components know about it. You can also define and use any
other Field key in your project too, for your own needs. The main goal of Field objects is to provide a way to
define all field metadata in one place. Typically, those components whose behaviour depends on each field use certain
field keys to configure that behaviour. You must refer to their documentation to see which metadata keys are used by
each component.

It’s important to note that the Field objects used to declare the item do not stay assigned as class attributes. Instead,
they can be accessed through the Item.fields attribute.

And that’s all you need to know about declaring items.

3.2.3 Working with Items

Here are some examples of common tasks performed with items, using the Product item declared above. You will
notice the API is very similar to the dict API.

Creating items

>>> product = Product(name='Desktop PC', price=1000)
>>> print product
Product(name='Desktop PC', price=1000)

Getting field values

>>> product['name']
Desktop PC
>>> product.get('name')
Desktop PC

>>> product['price']
1000

>>> product['last_updated']
Traceback (most recent call last):

...
KeyError: 'last_updated'

>>> product.get('last_updated', 'not set')
not set

>>> product['lala'] # getting unknown field

3.2. Items 27

http://www.djangoproject.com/
http://docs.djangoproject.com/en/dev/topics/db/models/
http://docs.python.org/library/stdtypes.html#dict

Scrapy Documentation, Release 0.18.4

Traceback (most recent call last):
...

KeyError: 'lala'

>>> product.get('lala', 'unknown field')
'unknown field'

>>> 'name' in product # is name field populated?
True

>>> 'last_updated' in product # is last_updated populated?
False

>>> 'last_updated' in product.fields # is last_updated a declared field?
True

>>> 'lala' in product.fields # is lala a declared field?
False

Setting field values

>>> product['last_updated'] = 'today'
>>> product['last_updated']
today

>>> product['lala'] = 'test' # setting unknown field
Traceback (most recent call last):

...
KeyError: 'Product does not support field: lala'

Accessing all populated values

To access all populated values, just use the typical dict API:

>>> product.keys()
['price', 'name']

>>> product.items()
[('price', 1000), ('name', 'Desktop PC')]

Other common tasks

Copying items:

>>> product2 = Product(product)
>>> print product2
Product(name='Desktop PC', price=1000)

>>> product3 = product2.copy()
>>> print product3
Product(name='Desktop PC', price=1000)

Creating dicts from items:

28 Chapter 3. Basic concepts

http://docs.python.org/library/stdtypes.html#dict

Scrapy Documentation, Release 0.18.4

>>> dict(product) # create a dict from all populated values
{'price': 1000, 'name': 'Desktop PC'}

Creating items from dicts:

>>> Product({'name': 'Laptop PC', 'price': 1500})
Product(price=1500, name='Laptop PC')

>>> Product({'name': 'Laptop PC', 'lala': 1500}) # warning: unknown field in dict
Traceback (most recent call last):

...
KeyError: 'Product does not support field: lala'

3.2.4 Extending Items

You can extend Items (to add more fields or to change some metadata for some fields) by declaring a subclass of your
original Item.

For example:

class DiscountedProduct(Product):
discount_percent = Field(serializer=str)
discount_expiration_date = Field()

You can also extend field metadata by using the previous field metadata and appending more values, or changing
existing values, like this:

class SpecificProduct(Product):
name = Field(Product.fields['name'], serializer=my_serializer)

That adds (or replaces) the serializer metadata key for the name field, keeping all the previously existing meta-
data values.

3.2.5 Item objects

class scrapy.item.Item([arg])
Return a new Item optionally initialized from the given argument.

Items replicate the standard dict API, including its constructor. The only additional attribute provided by Items
is:

fields
A dictionary containing all declared fields for this Item, not only those populated. The keys are the field
names and the values are the Field objects used in the Item declaration.

3.2.6 Field objects

class scrapy.item.Field([arg])
The Field class is just an alias to the built-in dict class and doesn’t provide any extra functionality or at-
tributes. In other words, Field objects are plain-old Python dicts. A separate class is used to support the item
declaration syntax based on class attributes.

3.2. Items 29

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict

Scrapy Documentation, Release 0.18.4

3.3 Spiders

Spiders are classes which define how a certain site (or group of sites) will be scraped, including how to perform the
crawl (ie. follow links) and how to extract structured data from their pages (ie. scraping items). In other words, Spiders
are the place where you define the custom behaviour for crawling and parsing pages for a particular site (or, in some
cases, group of sites).

For spiders, the scraping cycle goes through something like this:

1. You start by generating the initial Requests to crawl the first URLs, and specify a callback function to be called
with the response downloaded from those requests.

The first requests to perform are obtained by calling the start_requests() method which (by default)
generates Request for the URLs specified in the start_urls and the parse method as callback function
for the Requests.

2. In the callback function, you parse the response (web page) and return either Item objects, Request objects,
or an iterable of both. Those Requests will also contain a callback (maybe the same) and will then be downloaded
by Scrapy and then their response handled by the specified callback.

3. In callback functions, you parse the page contents, typically using Selectors (but you can also use BeautifulSoup,
lxml or whatever mechanism you prefer) and generate items with the parsed data.

4. Finally, the items returned from the spider will be typically persisted to a database (in some Item Pipeline) or
written to a file using Feed exports.

Even though this cycle applies (more or less) to any kind of spider, there are different kinds of default spiders bundled
into Scrapy for different purposes. We will talk about those types here.

3.3.1 Spider arguments

Spiders can receive arguments that modify their behaviour. Some common uses for spider arguments are to define the
start URLs or to restrict the crawl to certain sections of the site, but they can be used to configure any functionality of
the spider.

Spider arguments are passed through the crawl command using the -a option. For example:

scrapy crawl myspider -a category=electronics

Spiders receive arguments in their constructors:

class MySpider(BaseSpider):
name = 'myspider'

def __init__(self, category=None, *args, **kwargs):
super(MySpider, self).__init__(*args, **kwargs)
self.start_urls = ['http://www.example.com/categories/%s' % category]
...

Spider arguments can also be passed through the Scrapyd schedule.json API. See Scrapyd documentation.

3.3.2 Built-in spiders reference

Scrapy comes with some useful generic spiders that you can use, to subclass your spiders from. Their aim is to
provide convenient functionality for a few common scraping cases, like following all links on a site based on certain
rules, crawling from Sitemaps, or parsing a XML/CSV feed.

30 Chapter 3. Basic concepts

http://scrapyd.readthedocs.org/
http://www.sitemaps.org

Scrapy Documentation, Release 0.18.4

For the examples used in the following spiders, we’ll assume you have a project with a TestItem declared in a
myproject.items module:

from scrapy.item import Item

class TestItem(Item):
id = Field()
name = Field()
description = Field()

BaseSpider

class scrapy.spider.BaseSpider
This is the simplest spider, and the one from which every other spider must inherit from (either the ones that
come bundled with Scrapy, or the ones that you write yourself). It doesn’t provide any special functionality. It
just requests the given start_urls/start_requests, and calls the spider’s method parse for each of
the resulting responses.

name
A string which defines the name for this spider. The spider name is how the spider is located (and instan-
tiated) by Scrapy, so it must be unique. However, nothing prevents you from instantiating more than one
instance of the same spider. This is the most important spider attribute and it’s required.

If the spider scrapes a single domain, a common practice is to name the spider after the domain, or without
the TLD. So, for example, a spider that crawls mywebsite.com would often be called mywebsite.

allowed_domains
An optional list of strings containing domains that this spider is allowed to crawl. Requests for URLs
not belonging to the domain names specified in this list won’t be followed if OffsiteMiddleware is
enabled.

start_urls
A list of URLs where the spider will begin to crawl from, when no particular URLs are specified. So,
the first pages downloaded will be those listed here. The subsequent URLs will be generated successively
from data contained in the start URLs.

start_requests()
This method must return an iterable with the first Requests to crawl for this spider.

This is the method called by Scrapy when the spider is opened for scraping when no particular URLs
are specified. If particular URLs are specified, the make_requests_from_url() is used instead to
create the Requests. This method is also called only once from Scrapy, so it’s safe to implement it as a
generator.

The default implementation uses make_requests_from_url() to generate Requests for each url in
start_urls.

If you want to change the Requests used to start scraping a domain, this is the method to override. For
example, if you need to start by logging in using a POST request, you could do:

def start_requests(self):
return [FormRequest("http://www.example.com/login",

formdata={'user': 'john', 'pass': 'secret'},
callback=self.logged_in)]

def logged_in(self, response):
here you would extract links to follow and return Requests for
each of them, with another callback
pass

3.3. Spiders 31

http://en.wikipedia.org/wiki/Top-level_domain

Scrapy Documentation, Release 0.18.4

make_requests_from_url(url)
A method that receives a URL and returns a Request object (or a list of Request objects) to scrape.
This method is used to construct the initial requests in the start_requests() method, and is typically
used to convert urls to requests.

Unless overridden, this method returns Requests with the parse() method as their callback function,
and with dont_filter parameter enabled (see Request class for more info).

parse(response)
This is the default callback used by Scrapy to process downloaded responses, when their requests don’t
specify a callback.

The parse method is in charge of processing the response and returning scraped data and/or more URLs
to follow. Other Requests callbacks have the same requirements as the BaseSpider class.

This method, as well as any other Request callback, must return an iterable of Request and/or Item
objects.

Parameters response (:class:~scrapy.http.Response‘) – the response to parse

log(message[, level, component])
Log a message using the scrapy.log.msg() function, automatically populating the spider argument
with the name of this spider. For more information see Logging.

BaseSpider example

Let’s see an example:

from scrapy import log # This module is useful for printing out debug information
from scrapy.spider import BaseSpider

class MySpider(BaseSpider):
name = 'example.com'
allowed_domains = ['example.com']
start_urls = [

'http://www.example.com/1.html',
'http://www.example.com/2.html',
'http://www.example.com/3.html',

]

def parse(self, response):
self.log('A response from %s just arrived!' % response.url)

Another example returning multiples Requests and Items from a single callback:

from scrapy.selector import HtmlXPathSelector
from scrapy.spider import BaseSpider
from scrapy.http import Request
from myproject.items import MyItem

class MySpider(BaseSpider):
name = 'example.com'
allowed_domains = ['example.com']
start_urls = [

'http://www.example.com/1.html',
'http://www.example.com/2.html',
'http://www.example.com/3.html',

]

32 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

def parse(self, response):
hxs = HtmlXPathSelector(response)
for h3 in hxs.select('//h3').extract():

yield MyItem(title=h3)

for url in hxs.select('//a/@href').extract():
yield Request(url, callback=self.parse)

CrawlSpider

class scrapy.contrib.spiders.CrawlSpider
This is the most commonly used spider for crawling regular websites, as it provides a convenient mechanism for
following links by defining a set of rules. It may not be the best suited for your particular web sites or project,
but it’s generic enough for several cases, so you can start from it and override it as needed for more custom
functionality, or just implement your own spider.

Apart from the attributes inherited from BaseSpider (that you must specify), this class supports a new attribute:

rules
Which is a list of one (or more) Rule objects. Each Rule defines a certain behaviour for crawling the
site. Rules objects are described below. If multiple rules match the same link, the first one will be used,
according to the order they’re defined in this attribute.

This spider also exposes an overrideable method:

parse_start_url(response)
This method is called for the start_urls responses. It allows to parse the initial responses and must return
either a Item object, a Request object, or an iterable containing any of them.

Crawling rules

class scrapy.contrib.spiders.Rule(link_extractor, callback=None, cb_kwargs=None, fol-
low=None, process_links=None, process_request=None)

link_extractor is a Link Extractor object which defines how links will be extracted from each crawled
page.

callback is a callable or a string (in which case a method from the spider object with that name will be used)
to be called for each link extracted with the specified link_extractor. This callback receives a response as its first
argument and must return a list containing Item and/or Request objects (or any subclass of them).

Warning: When writing crawl spider rules, avoid using parse as callback, since the CrawlSpider uses
the parse method itself to implement its logic. So if you override the parse method, the crawl spider will
no longer work.

cb_kwargs is a dict containing the keyword arguments to be passed to the callback function

follow is a boolean which specifies if links should be followed from each response extracted with this rule. If
callback is None follow defaults to True, otherwise it default to False.

process_links is a callable, or a string (in which case a method from the spider object with that name
will be used) which will be called for each list of links extracted from each response using the specified
link_extractor. This is mainly used for filtering purposes.

process_request is a callable, or a string (in which case a method from the spider object with that name
will be used) which will be called with every request extracted by this rule, and must return a request or None
(to filter out the request).

3.3. Spiders 33

Scrapy Documentation, Release 0.18.4

CrawlSpider example

Let’s now take a look at an example CrawlSpider with rules:

from scrapy.contrib.spiders import CrawlSpider, Rule
from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
from scrapy.selector import HtmlXPathSelector
from scrapy.item import Item

class MySpider(CrawlSpider):
name = 'example.com'
allowed_domains = ['example.com']
start_urls = ['http://www.example.com']

rules = (
Extract links matching 'category.php' (but not matching 'subsection.php')
and follow links from them (since no callback means follow=True by default).
Rule(SgmlLinkExtractor(allow=('category\.php',), deny=('subsection\.php',))),

Extract links matching 'item.php' and parse them with the spider's method parse_item
Rule(SgmlLinkExtractor(allow=('item\.php',)), callback='parse_item'),

)

def parse_item(self, response):
self.log('Hi, this is an item page! %s' % response.url)

hxs = HtmlXPathSelector(response)
item = Item()
item['id'] = hxs.select('//td[@id="item_id"]/text()').re(r'ID: (\d+)')
item['name'] = hxs.select('//td[@id="item_name"]/text()').extract()
item['description'] = hxs.select('//td[@id="item_description"]/text()').extract()
return item

This spider would start crawling example.com’s home page, collecting category links, and item links, parsing the latter
with the parse_item method. For each item response, some data will be extracted from the HTML using XPath,
and a Item will be filled with it.

XMLFeedSpider

class scrapy.contrib.spiders.XMLFeedSpider
XMLFeedSpider is designed for parsing XML feeds by iterating through them by a certain node name. The
iterator can be chosen from: iternodes, xml, and html. It’s recommended to use the iternodes iterator
for performance reasons, since the xml and html iterators generate the whole DOM at once in order to parse
it. However, using html as the iterator may be useful when parsing XML with bad markup.

To set the iterator and the tag name, you must define the following class attributes:

iterator
A string which defines the iterator to use. It can be either:

•’iternodes’ - a fast iterator based on regular expressions

•’html’ - an iterator which uses HtmlXPathSelector. Keep in mind this uses DOM parsing and must
load all DOM in memory which could be a problem for big feeds

•’xml’ - an iterator which uses XmlXPathSelector. Keep in mind this uses DOM parsing and must
load all DOM in memory which could be a problem for big feeds

It defaults to: ’iternodes’.

34 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

itertag
A string with the name of the node (or element) to iterate in. Example:

itertag = 'product'

namespaces
A list of (prefix, uri) tuples which define the namespaces available in that document that will be
processed with this spider. The prefix and uri will be used to automatically register namespaces using
the register_namespace() method.

You can then specify nodes with namespaces in the itertag attribute.

Example:

class YourSpider(XMLFeedSpider):

namespaces = [('n', 'http://www.sitemaps.org/schemas/sitemap/0.9')]
itertag = 'n:url'
...

Apart from these new attributes, this spider has the following overrideable methods too:

adapt_response(response)
A method that receives the response as soon as it arrives from the spider middleware, before the spider
starts parsing it. It can be used to modify the response body before parsing it. This method receives a
response and also returns a response (it could be the same or another one).

parse_node(response, selector)
This method is called for the nodes matching the provided tag name (itertag). Receives the response
and an XPathSelector for each node. Overriding this method is mandatory. Otherwise, you spider won’t
work. This method must return either a Item object, a Request object, or an iterable containing any of
them.

process_results(response, results)
This method is called for each result (item or request) returned by the spider, and it’s intended to perform
any last time processing required before returning the results to the framework core, for example setting
the item IDs. It receives a list of results and the response which originated those results. It must return a
list of results (Items or Requests).

XMLFeedSpider example

These spiders are pretty easy to use, let’s have a look at one example:

from scrapy import log
from scrapy.contrib.spiders import XMLFeedSpider
from myproject.items import TestItem

class MySpider(XMLFeedSpider):
name = 'example.com'
allowed_domains = ['example.com']
start_urls = ['http://www.example.com/feed.xml']
iterator = 'iternodes' # This is actually unnecessary, since it's the default value
itertag = 'item'

def parse_node(self, response, node):
log.msg('Hi, this is a <%s> node!: %s' % (self.itertag, ''.join(node.extract())))

item = Item()
item['id'] = node.select('@id').extract()

3.3. Spiders 35

Scrapy Documentation, Release 0.18.4

item['name'] = node.select('name').extract()
item['description'] = node.select('description').extract()
return item

Basically what we did up there was to create a spider that downloads a feed from the given start_urls, and then
iterates through each of its item tags, prints them out, and stores some random data in an Item.

CSVFeedSpider

class scrapy.contrib.spiders.CSVFeedSpider
This spider is very similar to the XMLFeedSpider, except that it iterates over rows, instead of nodes. The method
that gets called in each iteration is parse_row().

delimiter
A string with the separator character for each field in the CSV file Defaults to ’,’ (comma).

headers
A list of the rows contained in the file CSV feed which will be used to extract fields from it.

parse_row(response, row)
Receives a response and a dict (representing each row) with a key for each provided (or detected)
header of the CSV file. This spider also gives the opportunity to override adapt_response and
process_results methods for pre- and post-processing purposes.

CSVFeedSpider example

Let’s see an example similar to the previous one, but using a CSVFeedSpider:

from scrapy import log
from scrapy.contrib.spiders import CSVFeedSpider
from myproject.items import TestItem

class MySpider(CSVFeedSpider):
name = 'example.com'
allowed_domains = ['example.com']
start_urls = ['http://www.example.com/feed.csv']
delimiter = ';'
headers = ['id', 'name', 'description']

def parse_row(self, response, row):
log.msg('Hi, this is a row!: %r' % row)

item = TestItem()
item['id'] = row['id']
item['name'] = row['name']
item['description'] = row['description']
return item

SitemapSpider

class scrapy.contrib.spiders.SitemapSpider
SitemapSpider allows you to crawl a site by discovering the URLs using Sitemaps.

It supports nested sitemaps and discovering sitemap urls from robots.txt.

36 Chapter 3. Basic concepts

http://www.sitemaps.org
http://www.robotstxt.org/

Scrapy Documentation, Release 0.18.4

sitemap_urls
A list of urls pointing to the sitemaps whose urls you want to crawl.

You can also point to a robots.txt and it will be parsed to extract sitemap urls from it.

sitemap_rules
A list of tuples (regex, callback) where:

•regex is a regular expression to match urls extracted from sitemaps. regex can be either a str or a
compiled regex object.

•callback is the callback to use for processing the urls that match the regular expression. callback
can be a string (indicating the name of a spider method) or a callable.

For example:

sitemap_rules = [('/product/', 'parse_product')]

Rules are applied in order, and only the first one that matches will be used.

If you omit this attribute, all urls found in sitemaps will be processed with the parse callback.

sitemap_follow
A list of regexes of sitemap that should be followed. This is is only for sites that use Sitemap index files
that point to other sitemap files.

By default, all sitemaps are followed.

SitemapSpider examples

Simplest example: process all urls discovered through sitemaps using the parse callback:

from scrapy.contrib.spiders import SitemapSpider

class MySpider(SitemapSpider):
sitemap_urls = ['http://www.example.com/sitemap.xml']

def parse(self, response):
pass # ... scrape item here ...

Process some urls with certain callback and other urls with a different callback:

from scrapy.contrib.spiders import SitemapSpider

class MySpider(SitemapSpider):
sitemap_urls = ['http://www.example.com/sitemap.xml']
sitemap_rules = [

('/product/', 'parse_product'),
('/category/', 'parse_category'),

]

def parse_product(self, response):
pass # ... scrape product ...

def parse_category(self, response):
pass # ... scrape category ...

Follow sitemaps defined in the robots.txt file and only follow sitemaps whose url contains /sitemap_shop:

3.3. Spiders 37

http://www.robotstxt.org/
http://www.sitemaps.org/protocol.php#index
http://www.robotstxt.org/

Scrapy Documentation, Release 0.18.4

from scrapy.contrib.spiders import SitemapSpider

class MySpider(SitemapSpider):
sitemap_urls = ['http://www.example.com/robots.txt']
sitemap_rules = [

('/shop/', 'parse_shop'),
]
sitemap_follow = ['/sitemap_shops']

def parse_shop(self, response):
pass # ... scrape shop here ...

Combine SitemapSpider with other sources of urls:

from scrapy.contrib.spiders import SitemapSpider

class MySpider(SitemapSpider):
sitemap_urls = ['http://www.example.com/robots.txt']
sitemap_rules = [

('/shop/', 'parse_shop'),
]

other_urls = ['http://www.example.com/about']

def start_requests(self):
requests = list(super(MySpider, self).start_requests())
requests += [Request(x, callback=self.parse_other) for x in self.other_urls]
return requests

def parse_shop(self, response):
pass # ... scrape shop here ...

def parse_other(self, response):
pass # ... scrape other here ...

3.4 Link Extractors

LinkExtractors are objects whose only purpose is to extract links from web pages (scrapy.http.Response
objects) which will be eventually followed.

There are two Link Extractors available in Scrapy by default, but you create your own custom Link Extractors to suit
your needs by implementing a simple interface.

The only public method that every LinkExtractor has is extract_links, which receives a Response object and
returns a list of links. Link Extractors are meant to be instantiated once and their extract_links method called
several times with different responses, to extract links to follow.

Link extractors are used in the CrawlSpider class (available in Scrapy), through a set of rules, but you can also use
it in your spiders, even if you don’t subclass from CrawlSpider, as its purpose is very simple: to extract links.

3.4.1 Built-in link extractors reference

All available link extractors classes bundled with Scrapy are provided in the
scrapy.contrib.linkextractors module.

38 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

SgmlLinkExtractor

class scrapy.contrib.linkextractors.sgml.SgmlLinkExtractor(allow=(), deny=(),
allow_domains=(),
deny_domains=(),
deny_extensions=None,
restrict_xpaths=(),
tags=(‘a’, ‘area’),
attrs=(‘href’), canonical-
ize=True, unique=True,
process_value=None)

The SgmlLinkExtractor extends the base BaseSgmlLinkExtractor by providing additional filters that you
can specify to extract links, including regular expressions patterns that the links must match to be extracted. All
those filters are configured through these constructor parameters:

Parameters

• allow (a regular expression (or list of)) – a single regular expression (or
list of regular expressions) that the (absolute) urls must match in order to be extracted. If
not given (or empty), it will match all links.

• deny (a regular expression (or list of)) – a single regular expression (or
list of regular expressions) that the (absolute) urls must match in order to be excluded (ie.
not extracted). It has precedence over the allow parameter. If not given (or empty) it won’t
exclude any links.

• allow_domains (str or list) – a single value or a list of string containing domains
which will be considered for extracting the links

• deny_domains (str or list) – a single value or a list of strings containing domains
which won’t be considered for extracting the links

• deny_extensions (list) – a list of extensions that should be ignored when extract-
ing links. If not given, it will default to the IGNORED_EXTENSIONS list defined in the
scrapy.linkextractor module.

• restrict_xpaths (str or list) – is a XPath (or list of XPath’s) which defines
regions inside the response where links should be extracted from. If given, only the text
selected by those XPath will be scanned for links. See examples below.

• tags (str or list) – a tag or a list of tags to consider when extracting links. Defaults
to (’a’, ’area’).

• attrs (list) – list of attributes which should be considered when looking for links to
extract (only for those tags specified in the tags parameter). Defaults to (’href’,)

• canonicalize (boolean) – canonicalize each extracted url (using
scrapy.utils.url.canonicalize_url). Defaults to True.

• unique (boolean) – whether duplicate filtering should be applied to extracted links.

• process_value (callable) – see process_value argument of
BaseSgmlLinkExtractor class constructor

3.4. Link Extractors 39

https://github.com/scrapy/scrapy/blob/master/scrapy/linkextractor.py

Scrapy Documentation, Release 0.18.4

BaseSgmlLinkExtractor

class scrapy.contrib.linkextractors.sgml.BaseSgmlLinkExtractor(tag=”a”,
attr=”href”,
unique=False, pro-
cess_value=None)

The purpose of this Link Extractor is only to serve as a base class for the SgmlLinkExtractor. You should
use that one instead.

The constructor arguments are:

Parameters

• tag (str or callable) – either a string (with the name of a tag) or a function that
receives a tag name and returns True if links should be extracted from that tag, or False
if they shouldn’t. Defaults to ’a’. request (once it’s downloaded) as its first parameter. For
more information, see Passing additional data to callback functions.

• attr (str or callable) – either string (with the name of a tag attribute), or a function
that receives an attribute name and returns True if links should be extracted from it, or
False if they shouldn’t. Defaults to href.

• unique (boolean) – is a boolean that specifies if a duplicate filtering should be applied
to links extracted.

• process_value (callable) – a function which receives each value extracted from the
tag and attributes scanned and can modify the value and return a new one, or return None
to ignore the link altogether. If not given, process_value defaults to lambda x: x.

For example, to extract links from this code:

Link text

You can use the following function in process_value:

def process_value(value):
m = re.search("javascript:goToPage\('(.*?)'", value)
if m:

return m.group(1)

3.5 Selectors

When you’re scraping web pages, the most common task you need to perform is to extract data from the HTML source.
There are several libraries available to achieve this:

• BeautifulSoup is a very popular screen scraping library among Python programmers which constructs a Python
object based on the structure of the HTML code and also deals with bad markup reasonably well, but it has one
drawback: it’s slow.

• lxml is a XML parsing library (which also parses HTML) with a pythonic API based on ElementTree (which is
not part of the Python standard library).

Scrapy comes with its own mechanism for extracting data. They’re called XPath selectors (or just “selectors”, for
short) because they “select” certain parts of the HTML document specified by XPath expressions.

XPath is a language for selecting nodes in XML documents, which can also be used with HTML.

40 Chapter 3. Basic concepts

http://www.crummy.com/software/BeautifulSoup/
http://codespeak.net/lxml/
http://docs.python.org/library/xml.etree.elementtree.html
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

Scrapy Documentation, Release 0.18.4

Both lxml and Scrapy Selectors are built over the libxml2 library, which means they’re very similar in speed and
parsing accuracy.

This page explains how selectors work and describes their API which is very small and simple, unlike the lxml API
which is much bigger because the lxml library can be used for many other tasks, besides selecting markup documents.

For a complete reference of the selectors API see the XPath selector reference.

3.5.1 Using selectors

Constructing selectors

There are two types of selectors bundled with Scrapy. Those are:

• HtmlXPathSelector - for working with HTML documents

• XmlXPathSelector - for working with XML documents

Both share the same selector API, and are constructed with a Response object as their first parameter. This is the
Response they’re going to be “selecting”.

Example:

hxs = HtmlXPathSelector(response) # a HTML selector
xxs = XmlXPathSelector(response) # a XML selector

Using selectors with XPaths

To explain how to use the selectors we’ll use the Scrapy shell (which provides interactive testing) and an example page
located in the Scrapy documentation server:

http://doc.scrapy.org/en/latest/_static/selectors-sample1.html

Here’s its HTML code:

<html>
<head>
<base href='http://example.com/' />
<title>Example website</title>

</head>
<body>
<div id='images'>
Name: My image 1

Name: My image 2

Name: My image 3

Name: My image 4

Name: My image 5

</div>
</body>

</html>

First, let’s open the shell:

scrapy shell http://doc.scrapy.org/en/latest/_static/selectors-sample1.html

Then, after the shell loads, you’ll have some selectors already instantiated and ready to use.

Since we’re dealing with HTML, we’ll be using the HtmlXPathSelector object which is found, by default, in the
hxs shell variable.

3.5. Selectors 41

http://codespeak.net/lxml/
http://xmlsoft.org/
http://codespeak.net/lxml/
http://codespeak.net/lxml/
http://doc.scrapy.org/en/latest/_static/selectors-sample1.html

Scrapy Documentation, Release 0.18.4

So, by looking at the HTML code of that page, let’s construct an XPath (using an HTML selector) for selecting the
text inside the title tag:

>>> hxs.select('//title/text()')
[<HtmlXPathSelector (text) xpath=//title/text()>]

As you can see, the select() method returns an XPathSelectorList, which is a list of new selectors. This API can be
used quickly for extracting nested data.

To actually extract the textual data, you must call the selector extract() method, as follows:

>>> hxs.select('//title/text()').extract()
[u'Example website']

Now we’re going to get the base URL and some image links:

>>> hxs.select('//base/@href').extract()
[u'http://example.com/']

>>> hxs.select('//a[contains(@href, "image")]/@href').extract()
[u'image1.html',
u'image2.html',
u'image3.html',
u'image4.html',
u'image5.html']

>>> hxs.select('//a[contains(@href, "image")]/img/@src').extract()
[u'image1_thumb.jpg',
u'image2_thumb.jpg',
u'image3_thumb.jpg',
u'image4_thumb.jpg',
u'image5_thumb.jpg']

Using selectors with regular expressions

Selectors also have a re() method for extracting data using regular expressions. However, unlike using the
select() method, the re() method does not return a list of XPathSelector objects, so you can’t construct
nested .re() calls.

Here’s an example used to extract images names from the HTML code above:

>>> hxs.select('//a[contains(@href, "image")]/text()').re(r'Name:\s*(.*)')
[u'My image 1',
u'My image 2',
u'My image 3',
u'My image 4',
u'My image 5']

Nesting selectors

The select() selector method returns a list of selectors, so you can call the select() for those selectors too.
Here’s an example:

>>> links = hxs.select('//a[contains(@href, "image")]')
>>> links.extract()
[u'Name: My image 1
',
u'Name: My image 2
',

42 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

u'Name: My image 3
',
u'Name: My image 4
',
u'Name: My image 5
']

>>> for index, link in enumerate(links):
args = (index, link.select('@href').extract(), link.select('img/@src').extract())
print 'Link number %d points to url %s and image %s' % args

Link number 0 points to url [u'image1.html'] and image [u'image1_thumb.jpg']
Link number 1 points to url [u'image2.html'] and image [u'image2_thumb.jpg']
Link number 2 points to url [u'image3.html'] and image [u'image3_thumb.jpg']
Link number 3 points to url [u'image4.html'] and image [u'image4_thumb.jpg']
Link number 4 points to url [u'image5.html'] and image [u'image5_thumb.jpg']

Working with relative XPaths

Keep in mind that if you are nesting XPathSelectors and use an XPath that starts with /, that XPath will be absolute
to the document and not relative to the XPathSelector you’re calling it from.

For example, suppose you want to extract all <p> elements inside <div> elements. First, you would get all <div>
elements:

>>> divs = hxs.select('//div')

At first, you may be tempted to use the following approach, which is wrong, as it actually extracts all <p> elements
from the document, not only those inside <div> elements:

>>> for p in divs.select('//p') # this is wrong - gets all <p> from the whole document
>>> print p.extract()

This is the proper way to do it (note the dot prefixing the .//p XPath):

>>> for p in divs.select('.//p') # extracts all <p> inside
>>> print p.extract()

Another common case would be to extract all direct <p> children:

>>> for p in divs.select('p')
>>> print p.extract()

For more details about relative XPaths see the Location Paths section in the XPath specification.

3.5.2 Built-in XPath Selectors reference

There are two types of selectors bundled with Scrapy: HtmlXPathSelector and XmlXPathSelector. Both of
them implement the same XPathSelector interface. The only different is that one is used to process HTML data
and the other XML data.

XPathSelector objects

class scrapy.selector.XPathSelector(response)
A XPathSelector object is a wrapper over response to select certain parts of its content.

response is a Response object that will be used for selecting and extracting data

3.5. Selectors 43

http://www.w3.org/TR/xpath#location-paths

Scrapy Documentation, Release 0.18.4

select(xpath)
Apply the given XPath relative to this XPathSelector and return a list of XPathSelector objects (ie. a
XPathSelectorList) with the result.

xpath is a string containing the XPath to apply

re(regex)
Apply the given regex and return a list of unicode strings with the matches.

regex can be either a compiled regular expression or a string which will be compiled to a regular expres-
sion using re.compile(regex)

extract()
Return a unicode string with the content of this XPathSelector object.

register_namespace(prefix, uri)
Register the given namespace to be used in this XPathSelector. Without registering namespaces you
can’t select or extract data from non-standard namespaces. See examples below.

remove_namespaces()
Remove all namespaces, allowing to traverse the document using namespace-less xpaths. See example
below.

__nonzero__()
Returns True if there is any real content selected by this XPathSelector or False otherwise. In
other words, the boolean value of an XPathSelector is given by the contents it selects.

XPathSelectorList objects

class scrapy.selector.XPathSelectorList
The XPathSelectorList class is subclass of the builtin list class, which provides a few additional meth-
ods.

select(xpath)
Call the XPathSelector.select() method for all XPathSelector objects in this list and return
their results flattened, as a new XPathSelectorList.

xpath is the same argument as the one in XPathSelector.select()

re(regex)
Call the XPathSelector.re() method for all XPathSelector objects in this list and return their
results flattened, as a list of unicode strings.

regex is the same argument as the one in XPathSelector.re()

extract()
Call the XPathSelector.extract()method for all XPathSelector objects in this list and return
their results flattened, as a list of unicode strings.

extract_unquoted()
Call the XPathSelector.extract_unoquoted() method for all XPathSelector objects in
this list and return their results flattened, as a list of unicode strings. This method should not be applied to
all kinds of XPathSelectors. For more info see XPathSelector.extract_unoquoted().

HtmlXPathSelector objects

class scrapy.selector.HtmlXPathSelector(response)
A subclass of XPathSelector for working with HTML content. It uses the libxml2 HTML parser. See the
XPathSelector API for more info.

44 Chapter 3. Basic concepts

http://xmlsoft.org/

Scrapy Documentation, Release 0.18.4

HtmlXPathSelector examples

Here’s a couple of HtmlXPathSelector examples to illustrate several concepts. In all cases, we assume there is
already an HtmlPathSelector instantiated with a Response object like this:

x = HtmlXPathSelector(html_response)

1. Select all <h1> elements from a HTML response body, returning a list of XPathSelector objects (ie. a
XPathSelectorList object):

x.select("//h1")

2. Extract the text of all <h1> elements from a HTML response body, returning a list of unicode strings:

x.select("//h1").extract() # this includes the h1 tag
x.select("//h1/text()").extract() # this excludes the h1 tag

3. Iterate over all <p> tags and print their class attribute:

for node in x.select("//p"):
... print node.select("@href")

4. Extract textual data from all <p> tags without entities, as a list of unicode strings:

x.select("//p/text()").extract_unquoted()

the following line is wrong. extract_unquoted() should only be used
with textual XPathSelectors
x.select("//p").extract_unquoted() # it may work but output is unpredictable

XmlXPathSelector objects

class scrapy.selector.XmlXPathSelector(response)
A subclass of XPathSelector for working with XML content. It uses the libxml2 XML parser. See the
XPathSelector API for more info.

XmlXPathSelector examples

Here’s a couple of XmlXPathSelector examples to illustrate several concepts. In both cases we assume there is
already an XmlXPathSelector instantiated with a Response object like this:

x = XmlXPathSelector(xml_response)

1. Select all <product> elements from a XML response body, returning a list of XPathSelector objects (ie.
a XPathSelectorList object):

x.select("//product")

2. Extract all prices from a Google Base XML feed which requires registering a namespace:

x.register_namespace("g", "http://base.google.com/ns/1.0")
x.select("//g:price").extract()

3.5. Selectors 45

http://xmlsoft.org/
http://base.google.com/support/bin/answer.py?hl=en&answer=59461

Scrapy Documentation, Release 0.18.4

Removing namespaces

When dealing with scraping projects, it is often quite convenient to get rid of namespaces alto-
gether and just work with element names, to write more simple/convenient XPaths. You can use the
XPathSelector.remove_namespaces() method for that.

Let’s show an example that illustrates this with Github blog atom feed.

First, we open the shell with the url we want to scrape:

$ scrapy shell https://github.com/blog.atom

Once in the shell we can try selecting all <link> objects and see that it doesn’t work (because the Atom XML
namespace is obfuscating those nodes):

>>> xxs.select("//link")
[]

But once we call the XPathSelector.remove_namespaces() method, all nodes can be accessed directly by
their names:

>>> xxs.remove_namespaces()
>>> xxs.select("//link")
[<XmlXPathSelector xpath='//link' data=u'<link xmlns="http://www.w3.org/2005/Atom'>,
<XmlXPathSelector xpath='//link' data=u'<link xmlns="http://www.w3.org/2005/Atom'>,
...

If you wonder why the namespace removal procedure is not always called, instead of having to call it manually. This
is because of two reasons which, in order of relevance, are:

1. removing namespaces requires to iterate and modify all nodes in the document, which is a reasonably expensive
operation to performs for all documents crawled by Scrapy

2. there could be some cases where using namespaces is actually required, in case some element names clash
between namespaces. These cases are very rare though.

3.6 Item Loaders

Item Loaders provide a convenient mechanism for populating scraped Items. Even though Items can be populated
using their own dictionary-like API, the Item Loaders provide a much more convenient API for populating them from
a scraping process, by automating some common tasks like parsing the raw extracted data before assigning it.

In other words, Items provide the container of scraped data, while Item Loaders provide the mechanism for populating
that container.

Item Loaders are designed to provide a flexible, efficient and easy mechanism for extending and overriding different
field parsing rules, either by spider, or by source format (HTML, XML, etc) without becoming a nightmare to maintain.

3.6.1 Using Item Loaders to populate items

To use an Item Loader, you must first instantiate it. You can either instantiate it with an dict-like object (e.g. Item or
dict) or without one, in which case an Item is automatically instantiated in the Item Loader constructor using the Item
class specified in the ItemLoader.default_item_class attribute.

Then, you start collecting values into the Item Loader, typically using XPath Selectors. You can add more than one
value to the same item field; the Item Loader will know how to “join” those values later using a proper processing
function.

46 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

Here is a typical Item Loader usage in a Spider, using the Product item declared in the Items chapter:

from scrapy.contrib.loader import XPathItemLoader
from myproject.items import Product

def parse(self, response):
l = XPathItemLoader(item=Product(), response=response)
l.add_xpath('name', '//div[@class="product_name"]')
l.add_xpath('name', '//div[@class="product_title"]')
l.add_xpath('price', '//p[@id="price"]')
l.add_xpath('stock', '//p[@id="stock"]')
l.add_value('last_updated', 'today') # you can also use literal values
return l.load_item()

By quickly looking at that code, we can see the name field is being extracted from two different XPath locations in
the page:

1. //div[@class="product_name"]

2. //div[@class="product_title"]

In other words, data is being collected by extracting it from two XPath locations, using the add_xpath() method.
This is the data that will be assigned to the name field later.

Afterwords, similar calls are used for price and stock fields, and finally the last_update field is populated
directly with a literal value (today) using a different method: add_value().

Finally, when all data is collected, the ItemLoader.load_item() method is called which actually popu-
lates and returns the item populated with the data previously extracted and collected with the add_xpath() and
add_value() calls.

3.6.2 Input and Output processors

An Item Loader contains one input processor and one output processor for each (item) field. The input proces-
sor processes the extracted data as soon as it’s received (through the add_xpath() or add_value() meth-
ods) and the result of the input processor is collected and kept inside the ItemLoader. After collecting all data, the
ItemLoader.load_item() method is called to populate and get the populated Item object. That’s when the
output processor is called with the data previously collected (and processed using the input processor). The result of
the output processor is the final value that gets assigned to the item.

Let’s see an example to illustrate how the input and output processors are called for a particular field (the same applies
for any other field):

l = XPathItemLoader(Product(), some_xpath_selector)
l.add_xpath('name', xpath1) # (1)
l.add_xpath('name', xpath2) # (2)
l.add_value('name', 'test') # (3)
return l.load_item() # (4)

So what happens is:

1. Data from xpath1 is extracted, and passed through the input processor of the name field. The result of the
input processor is collected and kept in the Item Loader (but not yet assigned to the item).

2. Data from xpath2 is extracted, and passed through the same input processor used in (1). The result of the
input processor is appended to the data collected in (1) (if any).

3. This case is similar to the previous ones, except that the value to be collected is assigned directly, instead of
being extracted from a XPath. However, the value is still passed through the input processors. In this case, since

3.6. Item Loaders 47

Scrapy Documentation, Release 0.18.4

the value is not iterable it is converted to an iterable of a single element before passing it to the input processor,
because input processor always receive iterables.

4. The data collected in (1) and (2) is passed through the output processor of the name field. The result of the
output processor is the value assigned to the name field in the item.

It’s worth noticing that processors are just callable objects, which are called with the data to be parsed, and return a
parsed value. So you can use any function as input or output processor. The only requirement is that they must accept
one (and only one) positional argument, which will be an iterator.

Note: Both input and output processors must receive an iterator as their first argument. The output of those functions
can be anything. The result of input processors will be appended to an internal list (in the Loader) containing the
collected values (for that field). The result of the output processors is the value that will be finally assigned to the item.

The other thing you need to keep in mind is that the values returned by input processors are collected internally (in
lists) and then passed to output processors to populate the fields.

Last, but not least, Scrapy comes with some commonly used processors built-in for convenience.

3.6.3 Declaring Item Loaders

Item Loaders are declared like Items, by using a class definition syntax. Here is an example:

from scrapy.contrib.loader import ItemLoader
from scrapy.contrib.loader.processor import TakeFirst, MapCompose, Join

class ProductLoader(ItemLoader):

default_output_processor = TakeFirst()

name_in = MapCompose(unicode.title)
name_out = Join()

price_in = MapCompose(unicode.strip)

...

As you can see, input processors are declared using the _in suffix while output processors are de-
clared using the _out suffix. And you can also declare a default input/output processors using
the ItemLoader.default_input_processor and ItemLoader.default_output_processor at-
tributes.

3.6.4 Declaring Input and Output Processors

As seen in the previous section, input and output processors can be declared in the Item Loader definition, and it’s
very common to declare input processors this way. However, there is one more place where you can specify the input
and output processors to use: in the Item Field metadata. Here is an example:

from scrapy.item import Item, Field
from scrapy.contrib.loader.processor import MapCompose, Join, TakeFirst

from scrapy.utils.markup import remove_entities
from myproject.utils import filter_prices

class Product(Item):

48 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

name = Field(
input_processor=MapCompose(remove_entities),
output_processor=Join(),

)
price = Field(

default=0,
input_processor=MapCompose(remove_entities, filter_prices),
output_processor=TakeFirst(),

)

The precedence order, for both input and output processors, is as follows:

1. Item Loader field-specific attributes: field_in and field_out (most precedence)

2. Field metadata (input_processor and output_processor key)

3. Item Loader defaults: ItemLoader.default_input_processor() and
ItemLoader.default_output_processor() (least precedence)

See also: Reusing and extending Item Loaders.

3.6.5 Item Loader Context

The Item Loader Context is a dict of arbitrary key/values which is shared among all input and output processors in
the Item Loader. It can be passed when declaring, instantiating or using Item Loader. They are used to modify the
behaviour of the input/output processors.

For example, suppose you have a function parse_length which receives a text value and extracts a length from it:

def parse_length(text, loader_context):
unit = loader_context.get('unit', 'm')
... length parsing code goes here ...
return parsed_length

By accepting a loader_context argument the function is explicitly telling the Item Loader that is able to receive
an Item Loader context, so the Item Loader passes the currently active context when calling it, and the processor
function (parse_length in this case) can thus use them.

There are several ways to modify Item Loader context values:

1. By modifying the currently active Item Loader context (context attribute):

loader = ItemLoader(product)
loader.context['unit'] = 'cm'

2. On Item Loader instantiation (the keyword arguments of Item Loader constructor are stored in the Item Loader
context):

loader = ItemLoader(product, unit='cm')

3. On Item Loader declaration, for those input/output processors that support instatiating them with a Item Loader
context. MapCompose is one of them:

class ProductLoader(ItemLoader):
length_out = MapCompose(parse_length, unit='cm')

3.6. Item Loaders 49

Scrapy Documentation, Release 0.18.4

3.6.6 ItemLoader objects

class scrapy.contrib.loader.ItemLoader([item], **kwargs)
Return a new Item Loader for populating the given Item. If no item is given, one is instantiated automatically
using the class in default_item_class.

The item and the remaining keyword arguments are assigned to the Loader context (accessible through the
context attribute).

get_value(value, *processors, **kwargs)
Process the given value by the given processors and keyword arguments.

Available keyword arguments:

Parameters re (str or compiled regex) – a regular expression to use for extracting
data from the given value using extract_regex() method, applied before processors

Examples:

>>> from scrapy.contrib.loader.processor import TakeFirst
>>> loader.get_value(u'name: foo', TakeFirst(), unicode.upper, re='name: (.+)')
'FOO`

add_value(field_name, value, *processors, **kwargs)
Process and then add the given value for the given field.

The value is first passed through get_value() by giving the processors and kwargs, and then
passed through the field input processor and its result appended to the data collected for that field. If the
field already contains collected data, the new data is added.

The given field_name can be None, in which case values for multiple fields may be added. And the
processed value should be a dict with field_name mapped to values.

Examples:

loader.add_value('name', u'Color TV')
loader.add_value('colours', [u'white', u'blue'])
loader.add_value('length', u'100')
loader.add_value('name', u'name: foo', TakeFirst(), re='name: (.+)')
loader.add_value(None, {'name': u'foo', 'sex': u'male'})

replace_value(field_name, value)
Similar to add_value() but replaces the collected data with the new value instead of adding it.

load_item()
Populate the item with the data collected so far, and return it. The data collected is first passed through the
output processors to get the final value to assign to each item field.

get_collected_values(field_name)
Return the collected values for the given field.

get_output_value(field_name)
Return the collected values parsed using the output processor, for the given field. This method doesn’t
populate or modify the item at all.

get_input_processor(field_name)
Return the input processor for the given field.

get_output_processor(field_name)
Return the output processor for the given field.

item
The Item object being parsed by this Item Loader.

50 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

context
The currently active Context of this Item Loader.

default_item_class
An Item class (or factory), used to instantiate items when not given in the constructor.

default_input_processor
The default input processor to use for those fields which don’t specify one.

default_output_processor
The default output processor to use for those fields which don’t specify one.

class scrapy.contrib.loader.XPathItemLoader([item, selector, response], **kwargs)
The XPathItemLoader class extends the ItemLoader class providing more convenient mechanisms for
extracting data from web pages using XPath selectors.

XPathItemLoader objects accept two more additional parameters in their constructors:

Parameters

• selector (XPathSelector object) – The selector to extract data from, when using the
add_xpath() or replace_xpath() method.

• response (Response object) – The response used to construct the selector using the
default_selector_class, unless the selector argument is given, in which case this
argument is ignored.

get_xpath(xpath, *processors, **kwargs)
Similar to ItemLoader.get_value() but receives an XPath instead of a value, which is used to
extract a list of unicode strings from the selector associated with this XPathItemLoader.

Parameters

• xpath (str) – the XPath to extract data from

• re (str or compiled regex) – a regular expression to use for extracting data from
the selected XPath region

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.get_xpath('//p[@class="product-name"]')
HTML snippet: <p id="price">the price is $1200</p>
loader.get_xpath('//p[@id="price"]', TakeFirst(), re='the price is (.*)')

add_xpath(field_name, xpath, *processors, **kwargs)
Similar to ItemLoader.add_value() but receives an XPath instead of a value, which is used to
extract a list of unicode strings from the selector associated with this XPathItemLoader.

See get_xpath() for kwargs.

Parameters xpath (str) – the XPath to extract data from

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.add_xpath('name', '//p[@class="product-name"]')
HTML snippet: <p id="price">the price is $1200</p>
loader.add_xpath('price', '//p[@id="price"]', re='the price is (.*)')

replace_xpath(field_name, xpath, *processors, **kwargs)
Similar to add_xpath() but replaces collected data instead of adding it.

3.6. Item Loaders 51

Scrapy Documentation, Release 0.18.4

default_selector_class
The class used to construct the selector of this XPathItemLoader, if only a response is given in
the constructor. If a selector is given in the constructor this attribute is ignored. This attribute is sometimes
overridden in subclasses.

selector
The XPathSelector object to extract data from. It’s either the selector given in the constructor or
one created from the response given in the constructor using the default_selector_class. This
attribute is meant to be read-only.

3.6.7 Reusing and extending Item Loaders

As your project grows bigger and acquires more and more spiders, maintenance becomes a fundamental problem,
specially when you have to deal with many different parsing rules for each spider, having a lot of exceptions, but also
wanting to reuse the common processors.

Item Loaders are designed to ease the maintenance burden of parsing rules, without losing flexibility and, at the same
time, providing a convenient mechanism for extending and overriding them. For this reason Item Loaders support
traditional Python class inheritance for dealing with differences of specific spiders (or groups of spiders).

Suppose, for example, that some particular site encloses their product names in three dashes (ie. ---Plasma
TV---) and you don’t want to end up scraping those dashes in the final product names.

Here’s how you can remove those dashes by reusing and extending the default Product Item Loader
(ProductLoader):

from scrapy.contrib.loader.processor import MapCompose
from myproject.ItemLoaders import ProductLoader

def strip_dashes(x):
return x.strip('-')

class SiteSpecificLoader(ProductLoader):
name_in = MapCompose(strip_dashes, ProductLoader.name_in)

Another case where extending Item Loaders can be very helpful is when you have multiple source formats, for example
XML and HTML. In the XML version you may want to remove CDATA occurrences. Here’s an example of how to do
it:

from scrapy.contrib.loader.processor import MapCompose
from myproject.ItemLoaders import ProductLoader
from myproject.utils.xml import remove_cdata

class XmlProductLoader(ProductLoader):
name_in = MapCompose(remove_cdata, ProductLoader.name_in)

And that’s how you typically extend input processors.

As for output processors, it is more common to declare them in the field metadata, as they usually depend only on
the field and not on each specific site parsing rule (as input processors do). See also: Declaring Input and Output
Processors.

There are many other possible ways to extend, inherit and override your Item Loaders, and different Item Loaders
hierarchies may fit better for different projects. Scrapy only provides the mechanism; it doesn’t impose any specific
organization of your Loaders collection - that’s up to you and your project’s needs.

52 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

3.6.8 Available built-in processors

Even though you can use any callable function as input and output processors, Scrapy provides some commonly
used processors, which are described below. Some of them, like the MapCompose (which is typically used as input
processor) compose the output of several functions executed in order, to produce the final parsed value.

Here is a list of all built-in processors:

class scrapy.contrib.loader.processor.Identity
The simplest processor, which doesn’t do anything. It returns the original values unchanged. It doesn’t receive
any constructor arguments nor accepts Loader contexts.

Example:

>>> from scrapy.contrib.loader.processor import Identity
>>> proc = Identity()
>>> proc(['one', 'two', 'three'])
['one', 'two', 'three']

class scrapy.contrib.loader.processor.TakeFirst
Return the first non-null/non-empty value from the values received, so it’s typically used as an output processor
to single-valued fields. It doesn’t receive any constructor arguments, nor accept Loader contexts.

Example:

>>> from scrapy.contrib.loader.processor import TakeFirst
>>> proc = TakeFirst()
>>> proc(['', 'one', 'two', 'three'])
'one'

class scrapy.contrib.loader.processor.Join(separator=u’ ‘)
Returns the values joined with the separator given in the constructor, which defaults to u’ ’. It doesn’t accept
Loader contexts.

When using the default separator, this processor is equivalent to the function: u’ ’.join

Examples:

>>> from scrapy.contrib.loader.processor import Join
>>> proc = Join()
>>> proc(['one', 'two', 'three'])
u'one two three'
>>> proc = Join('
')
>>> proc(['one', 'two', 'three'])
u'one
two
three'

class scrapy.contrib.loader.processor.Compose(*functions, **default_loader_context)
A processor which is constructed from the composition of the given functions. This means that each input value
of this processor is passed to the first function, and the result of that function is passed to the second function,
and so on, until the last function returns the output value of this processor.

By default, stop process on None value. This behaviour can be changed by passing keyword argument
stop_on_none=False.

Example:

>>> from scrapy.contrib.loader.processor import Compose
>>> proc = Compose(lambda v: v[0], str.upper)
>>> proc(['hello', 'world'])
'HELLO'

3.6. Item Loaders 53

Scrapy Documentation, Release 0.18.4

Each function can optionally receive a loader_context parameter. For those which do, this processor will
pass the currently active Loader context through that parameter.

The keyword arguments passed in the constructor are used as the default Loader context values passed to each
function call. However, the final Loader context values passed to functions are overridden with the currently
active Loader context accessible through the ItemLoader.context() attribute.

class scrapy.contrib.loader.processor.MapCompose(*functions, **default_loader_context)
A processor which is constructed from the composition of the given functions, similar to the Compose pro-
cessor. The difference with this processor is the way internal results are passed among functions, which is as
follows:

The input value of this processor is iterated and each element is passed to the first function, and the result of
that function (for each element) is concatenated to construct a new iterable, which is then passed to the second
function, and so on, until the last function is applied for each value of the list of values collected so far. The
output values of the last function are concatenated together to produce the output of this processor.

Each particular function can return a value or a list of values, which is flattened with the list of values returned
by the same function applied to the other input values. The functions can also return None in which case the
output of that function is ignored for further processing over the chain.

This processor provides a convenient way to compose functions that only work with single values (instead of
iterables). For this reason the MapCompose processor is typically used as input processor, since data is often
extracted using the extract() method of selectors, which returns a list of unicode strings.

The example below should clarify how it works:

>>> def filter_world(x):
... return None if x == 'world' else x
...
>>> from scrapy.contrib.loader.processor import MapCompose
>>> proc = MapCompose(filter_world, unicode.upper)
>>> proc([u'hello', u'world', u'this', u'is', u'scrapy'])
[u'HELLO, u'THIS', u'IS', u'SCRAPY']

As with the Compose processor, functions can receive Loader contexts, and constructor keyword arguments are
used as default context values. See Compose processor for more info.

3.7 Scrapy shell

The Scrapy shell is an interactive shell where you can try and debug your scraping code very quickly, without having
to run the spider. It’s meant to be used for testing data extraction code, but you can actually use it for testing any kind
of code as it is also a regular Python shell.

The shell is used for testing XPath expressions and see how they work and what data they extract from the web pages
you’re trying to scrape. It allows you to interactively test your XPaths while you’re writing your spider, without having
to run the spider to test every change.

Once you get familiarized with the Scrapy shell, you’ll see that it’s an invaluable tool for developing and debugging
your spiders.

If you have IPython installed, the Scrapy shell will use it (instead of the standard Python console). The IPython console
is much more powerful and provides smart auto-completion and colorized output, among other things.

We highly recommend you install IPython, specially if you’re working on Unix systems (where IPython excels). See
the IPython installation guide for more info.

54 Chapter 3. Basic concepts

http://ipython.scipy.org/
http://ipython.scipy.org/
http://ipython.scipy.org/
http://ipython.scipy.org/
http://ipython.scipy.org/doc/rel-0.9.1/html/install/index.html

Scrapy Documentation, Release 0.18.4

3.7.1 Launch the shell

To launch the Scrapy shell you can use the shell command like this:

scrapy shell <url>

Where the <url> is the URL you want to scrape.

3.7.2 Using the shell

The Scrapy shell is just a regular Python console (or IPython console if you have it available) which provides some
additional shortcut functions for convenience.

Available Shortcuts

• shelp() - print a help with the list of available objects and shortcuts

• fetch(request_or_url) - fetch a new response from the given request or URL and update all related
objects accordingly.

• view(response) - open the given response in your local web browser, for inspection. This will add a <base>
tag to the response body in order for external links (such as images and style sheets) to display properly. Note,
however,that this will create a temporary file in your computer, which won’t be removed automatically.

Available Scrapy objects

The Scrapy shell automatically creates some convenient objects from the downloaded page, like the Response object
and the XPathSelector objects (for both HTML and XML content).

Those objects are:

• spider - the Spider which is known to handle the URL, or a BaseSpider object if there is no spider found
for the current URL

• request - a Request object of the last fetched page. You can modify this request using replace() or
fetch a new request (without leaving the shell) using the fetch shortcut.

• response - a Response object containing the last fetched page

• hxs - a HtmlXPathSelector object constructed with the last response fetched

• xxs - a XmlXPathSelector object constructed with the last response fetched

• settings - the current Scrapy settings

3.7.3 Example of shell session

Here’s an example of a typical shell session where we start by scraping the http://scrapy.org page, and then proceed to
scrape the http://slashdot.org page. Finally, we modify the (Slashdot) request method to POST and re-fetch it getting a
HTTP 405 (method not allowed) error. We end the session by typing Ctrl-D (in Unix systems) or Ctrl-Z in Windows.

Keep in mind that the data extracted here may not be the same when you try it, as those pages are not static and could
have changed by the time you test this. The only purpose of this example is to get you familiarized with how the
Scrapy shell works.

First, we launch the shell:

3.7. Scrapy shell 55

http://www.w3schools.com/TAGS/tag_base.asp
http://www.w3schools.com/TAGS/tag_base.asp
http://scrapy.org
http://slashdot.org

Scrapy Documentation, Release 0.18.4

scrapy shell http://scrapy.org --nolog

Then, the shell fetches the URL (using the Scrapy downloader) and prints the list of available objects and useful
shortcuts (you’ll notice that these lines all start with the [s] prefix):

[s] Available objects
[s] hxs <HtmlXPathSelector (http://scrapy.org) xpath=None>
[s] item Item()
[s] request <http://scrapy.org>
[s] response <http://scrapy.org>
[s] settings <Settings 'mybot.settings'>
[s] spider <scrapy.spider.models.BaseSpider object at 0x2bed9d0>
[s] xxs <XmlXPathSelector (http://scrapy.org) xpath=None>
[s] Useful shortcuts:
[s] shelp() Prints this help.
[s] fetch(req_or_url) Fetch a new request or URL and update objects
[s] view(response) View response in a browser

>>>

After that, we can star playing with the objects:

>>> hxs.select("//h2/text()").extract()[0]
u'Welcome to Scrapy'

>>> fetch("http://slashdot.org")
[s] Available Scrapy objects:
[s] hxs <HtmlXPathSelector (http://slashdot.org) xpath=None>
[s] item JobItem()
[s] request <GET http://slashdot.org>
[s] response <200 http://slashdot.org>
[s] settings <Settings 'jobsbot.settings'>
[s] spider <BaseSpider 'default' at 0x3c44a10>
[s] xxs <XmlXPathSelector (http://slashdot.org) xpath=None>
[s] Useful shortcuts:
[s] shelp() Shell help (print this help)
[s] fetch(req_or_url) Fetch request (or URL) and update local objects
[s] view(response) View response in a browser

>>> hxs.select("//h2/text()").extract()
[u'News for nerds, stuff that matters']

>>> request = request.replace(method="POST")

>>> fetch(request)
2009-04-03 00:57:39-0300 [default] ERROR: Downloading <http://slashdot.org> from <None>: 405 Method Not Allowed

>>>

3.7.4 Invoking the shell from spiders to inspect responses

Sometimes you want to inspect the responses that are being processed in a certain point of your spider, if only to check
that response you expect is getting there.

This can be achieved by using the scrapy.shell.inspect_response function.

Here’s an example of how you would call it from your spider:

56 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

class MySpider(BaseSpider):
...

def parse(self, response):
if response.url == 'http://www.example.com/products.php':

from scrapy.shell import inspect_response
inspect_response(response)

... your parsing code ..

When you run the spider, you will get something similar to this:

2009-08-27 19:15:25-0300 [example.com] DEBUG: Crawled <http://www.example.com/> (referer: <None>)
2009-08-27 19:15:26-0300 [example.com] DEBUG: Crawled <http://www.example.com/products.php> (referer: <http://www.example.com/>)
[s] Available objects
[s] hxs <HtmlXPathSelector (http://www.example.com/products.php) xpath=None>
...

>>> response.url
'http://www.example.com/products.php'

Then, you can check if the extraction code is working:

>>> hxs.select('//h1')
[]

Nope, it doesn’t. So you can open the response in your web browser and see if it’s the response you were expecting:

>>> view(response)
>>>

Finally you hit Ctrl-D (or Ctrl-Z in Windows) to exit the shell and resume the crawling:

>>> ^D
2009-08-27 19:15:25-0300 [example.com] DEBUG: Crawled <http://www.example.com/product.php?id=1> (referer: <None>)
2009-08-27 19:15:25-0300 [example.com] DEBUG: Crawled <http://www.example.com/product.php?id=2> (referer: <None>)
...

Note that you can’t use the fetch shortcut here since the Scrapy engine is blocked by the shell. However, after you
leave the shell, the spider will continue crawling where it stopped, as shown above.

3.8 Item Pipeline

After an item has been scraped by a spider, it is sent to the Item Pipeline which process it through several components
that are executed sequentially.

Each item pipeline component (sometimes referred as just “Item Pipeline”) is a Python class that implements a simple
method. They receive an Item and perform an action over it, also deciding if the Item should continue through the
pipeline or be dropped and no longer processed.

Typical use for item pipelines are:

• cleansing HTML data

• validating scraped data (checking that the items contain certain fields)

• checking for duplicates (and dropping them)

• storing the scraped item in a database

3.8. Item Pipeline 57

Scrapy Documentation, Release 0.18.4

3.8.1 Writing your own item pipeline

Writing your own item pipeline is easy. Each item pipeline component is a single Python class that must implement
the following method:

process_item(item, spider)
This method is called for every item pipeline component and must either return a Item (or any descendant class)
object or raise a DropItem exception. Dropped items are no longer processed by further pipeline components.

Parameters

• item (Item object) – the item scraped

• spider (BaseSpider object) – the spider which scraped the item

Additionally, they may also implement the following methods:

open_spider(spider)
This method is called when the spider is opened.

Parameters spider (BaseSpider object) – the spider which was opened

close_spider(spider)
This method is called when the spider is closed.

Parameters spider (BaseSpider object) – the spider which was closed

3.8.2 Item pipeline example

Price validation and dropping items with no prices

Let’s take a look at the following hypothetical pipeline that adjusts the price attribute for those items that do not
include VAT (price_excludes_vat attribute), and drops those items which don’t contain a price:

from scrapy.exceptions import DropItem

class PricePipeline(object):

vat_factor = 1.15

def process_item(self, item, spider):
if item['price']:

if item['price_excludes_vat']:
item['price'] = item['price'] * self.vat_factor

return item
else:

raise DropItem("Missing price in %s" % item)

Write items to a JSON file

The following pipeline stores all scraped items (from all spiders) into a a single items.jl file, containing one item
per line serialized in JSON format:

import json

class JsonWriterPipeline(object):

def __init__(self):

58 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

self.file = open('items.jl', 'wb')

def process_item(self, item, spider):
line = json.dumps(dict(item)) + "\n"
self.file.write(line)
return item

Note: The purpose of JsonWriterPipeline is just to introduce how to write item pipelines. If you really want to store
all scraped items into a JSON file you should use the Feed exports.

Duplicates filter

A filter that looks for duplicate items, and drops those items that were already processed. Let say that our items have
an unique id, but our spider returns multiples items with the same id:

from scrapy import signals
from scrapy.exceptions import DropItem

class DuplicatesPipeline(object):

def __init__(self):
self.ids_seen = set()

def process_item(self, item, spider):
if item['id'] in self.ids_seen:

raise DropItem("Duplicate item found: %s" % item)
else:

self.ids_seen.add(item['id'])
return item

3.8.3 Activating an Item Pipeline component

To activate an Item Pipeline component you must add its class to the ITEM_PIPELINES list, like in the following
example:

ITEM_PIPELINES = [
'myproject.pipeline.PricePipeline',
'myproject.pipeline.JsonWriterPipeline',

]

3.9 Feed exports

New in version 0.10.

One of the most frequently required features when implementing scrapers is being able to store the scraped data
properly and, quite often, that means generating a “export file” with the scraped data (commonly called “export feed”)
to be consumed by other systems.

Scrapy provides this functionality out of the box with the Feed Exports, which allows you to generate a feed with the
scraped items, using multiple serialization formats and storage backends.

3.9. Feed exports 59

Scrapy Documentation, Release 0.18.4

3.9.1 Serialization formats

For serializing the scraped data, the feed exports use the Item exporters and these formats are supported out of the box:

• JSON

• JSON lines

• CSV

• XML

But you can also extend the supported format through the FEED_EXPORTERS setting.

JSON

• FEED_FORMAT: json

• Exporter used: JsonItemExporter

• See this warning if you’re using JSON with large feeds

JSON lines

• FEED_FORMAT: jsonlines

• Exporter used: JsonLinesItemExporter

CSV

• FEED_FORMAT: csv

• Exporter used: CsvItemExporter

XML

• FEED_FORMAT: xml

• Exporter used: XmlItemExporter

Pickle

• FEED_FORMAT: pickle

• Exporter used: PickleItemExporter

Marshal

• FEED_FORMAT: marshal

• Exporter used: MarshalItemExporter

60 Chapter 3. Basic concepts

Scrapy Documentation, Release 0.18.4

3.9.2 Storages

When using the feed exports you define where to store the feed using a URI (through the FEED_URI setting). The
feed exports supports multiple storage backend types which are defined by the URI scheme.

The storages backends supported out of the box are:

• Local filesystem

• FTP

• S3 (requires boto)

• Standard output

Some storage backends may be unavailable if the required external libraries are not available. For example, the S3
backend is only available if the boto library is installed.

3.9.3 Storage URI parameters

The storage URI can also contain parameters that get replaced when the feed is being created. These parameters are:

• %(time)s - gets replaced by a timestamp when the feed is being created

• %(name)s - gets replaced by the spider name

Any other named parameter gets replaced by the spider attribute of the same name. For example, %(site_id)s
would get replaced by the spider.site_id attribute the moment the feed is being created.

Here are some examples to illustrate:

• Store in FTP using one directory per spider:

– ftp://user:password@ftp.example.com/scraping/feeds/%(name)s/%(time)s.json

• Store in S3 using one directory per spider:

– s3://mybucket/scraping/feeds/%(name)s/%(time)s.json

3.9.4 Storage backends

Local filesystem

The feeds are stored in the local filesystem.

• URI scheme: file

• Example URI: file:///tmp/export.csv

• Required external libraries: none

Note that for the local filesystem storage (only) you can omit the scheme if you specify an absolute path like
/tmp/export.csv. This only works on Unix systems though.

FTP

The feeds are stored in a FTP server.

• URI scheme: ftp

• Example URI: ftp://user:pass@ftp.example.com/path/to/export.csv

3.9. Feed exports 61

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://code.google.com/p/boto/
http://code.google.com/p/boto/

Scrapy Documentation, Release 0.18.4

• Required external libraries: none

S3

The feeds are stored on Amazon S3.

• URI scheme: s3

• Example URIs:

– s3://mybucket/path/to/export.csv

– s3://aws_key:aws_secret@mybucket/path/to/export.csv

• Required external libraries: boto

The AWS credentials can be passed as user/password in the URI, or they can be passed through the following settings:

• AWS_ACCESS_KEY_ID

• AWS_SECRET_ACCESS_KEY

Standard output

The feeds are written to the standard output of the Scrapy process.

• URI scheme: stdout

• Example URI: stdout:

• Required external libraries: none

3.9.5 Settings

These are the settings used for configuring the feed exports:

• FEED_URI (mandatory)

• FEED_FORMAT

• FEED_STORAGES

• FEED_EXPORTERS

• FEED_STORE_EMPTY

FEED_URI

Default: None

The URI of the export feed. See Storage backends for supported URI schemes.

This setting is required for enabling the feed exports.

FEED_FORMAT

The serialization format to be used for the feed. See Serialization formats for possible values.

62 Chapter 3. Basic concepts

http://aws.amazon.com/s3/
http://code.google.com/p/boto/

Scrapy Documentation, Release 0.18.4

FEED_STORE_EMPTY

Default: False

Whether to export empty feeds (ie. feeds with no items).

FEED_STORAGES

Default:: {}

A dict containing additional feed storage backends supported by your project. The keys are URI schemes and the
values are paths to storage classes.

FEED_STORAGES_BASE

Default:

{
'': 'scrapy.contrib.feedexport.FileFeedStorage',
'file': 'scrapy.contrib.feedexport.FileFeedStorage',
'stdout': 'scrapy.contrib.feedexport.StdoutFeedStorage',
's3': 'scrapy.contrib.feedexport.S3FeedStorage',
'ftp': 'scrapy.contrib.feedexport.FTPFeedStorage',

}

A dict containing the built-in feed storage backends supported by Scrapy.

FEED_EXPORTERS

Default:: {}

A dict containing additional exporters supported by your project. The keys are URI schemes and the values are paths
to Item exporter classes.

FEED_EXPORTERS_BASE

Default:

FEED_EXPORTERS_BASE = {
'json': 'scrapy.contrib.exporter.JsonItemExporter',
'jsonlines': 'scrapy.contrib.exporter.JsonLinesItemExporter',
'csv': 'scrapy.contrib.exporter.CsvItemExporter',
'xml': 'scrapy.contrib.exporter.XmlItemExporter',
'marshal': 'scrapy.contrib.exporter.MarshalItemExporter',

}

A dict containing the built-in feed exporters supported by Scrapy.

Command line tool Learn about the command-line tool used to manage your Scrapy project.

Items Define the data you want to scrape.

Spiders Write the rules to crawl your websites.

Selectors Extract the data from web pages using XPath.

Scrapy shell Test your extraction code in an interactive environment.

3.9. Feed exports 63

Scrapy Documentation, Release 0.18.4

Item Loaders Populate your items with the extracted data.

Item Pipeline Post-process and store your scraped data.

Feed exports Output your scraped data using different formats and storages.

Link Extractors Convenient classes to extract links to follow from pages.

64 Chapter 3. Basic concepts

CHAPTER 4

Built-in services

4.1 Logging

Scrapy provides a logging facility which can be used through the scrapy.log module. The current underlying
implementation uses Twisted logging but this may change in the future.

The logging service must be explicitly started through the scrapy.log.start() function.

4.1.1 Log levels

Scrapy provides 5 logging levels:

1. CRITICAL - for critical errors

2. ERROR - for regular errors

3. WARNING - for warning messages

4. INFO - for informational messages

5. DEBUG - for debugging messages

4.1.2 How to set the log level

You can set the log level using the –loglevel/-L command line option, or using the LOG_LEVEL setting.

4.1.3 How to log messages

Here’s a quick example of how to log a message using the WARNING level:

from scrapy import log
log.msg("This is a warning", level=log.WARNING)

4.1.4 Logging from Spiders

The recommended way to log from spiders is by using the Spider log() method, which already populates the
spider argument of the scrapy.log.msg() function. The other arguments are passed directly to the msg()
function.

65

http://twistedmatrix.com/projects/core/documentation/howto/logging.html

Scrapy Documentation, Release 0.18.4

4.1.5 scrapy.log module

scrapy.log.start(logfile=None, loglevel=None, logstdout=None)
Start the logging facility. This must be called before actually logging any messages. Otherwise, messages
logged before this call will get lost.

Parameters

• logfile (str) – the file path to use for logging output. If omitted, the LOG_FILE setting
will be used. If both are None, the log will be sent to standard error.

• loglevel – the minimum logging level to log. Available values are: CRITICAL, ERROR,
WARNING, INFO and DEBUG.

• logstdout (boolean) – if True, all standard output (and error) of your application
will be logged instead. For example if you “print ‘hello”’ it will appear in the Scrapy log. If
omitted, the LOG_STDOUT setting will be used.

scrapy.log.msg(message, level=INFO, spider=None)
Log a message

Parameters

• message (str) – the message to log

• level – the log level for this message. See Log levels.

• spider (BaseSpider object) – the spider to use for logging this message. This param-
eter should always be used when logging things related to a particular spider.

scrapy.log.CRITICAL
Log level for critical errors

scrapy.log.ERROR
Log level for errors

scrapy.log.WARNING
Log level for warnings

scrapy.log.INFO
Log level for informational messages (recommended level for production deployments)

scrapy.log.DEBUG
Log level for debugging messages (recommended level for development)

4.1.6 Logging settings

These settings can be used to configure the logging:

• LOG_ENABLED

• LOG_ENCODING

• LOG_FILE

• LOG_LEVEL

• LOG_STDOUT

66 Chapter 4. Built-in services

Scrapy Documentation, Release 0.18.4

4.2 Stats Collection

Scrapy provides a convenient facility for collecting stats in the form of key/values, where values are often counters.
The facility is called the Stats Collector, and can be accessed through the stats attribute of the Crawler API, as
illustrated by the examples in the Common Stats Collector uses section below.

However, the Stats Collector is always available, so you can always import it in your module and use its API (to
increment or set new stat keys), regardless of whether the stats collection is enabled or not. If it’s disabled, the API
will still work but it won’t collect anything. This is aimed at simplifying the stats collector usage: you should spend
no more than one line of code for collecting stats in your spider, Scrapy extension, or whatever code you’re using the
Stats Collector from.

Another feature of the Stats Collector is that it’s very efficient (when enabled) and extremely efficient (almost unno-
ticeable) when disabled.

The Stats Collector keeps a stats table per open spider which is automatically opened when the spider is opened, and
closed when the spider is closed.

4.2.1 Common Stats Collector uses

Access the stats collector through the stats attribute. Here is an example of an extension that access stats:

class ExtensionThatAccessStats(object):

def __init__(self, stats):
self.stats = stats

@classmethod
def from_crawler(cls, crawler):

return cls(crawler.stats)

Set stat value:

stats.set_value('hostname', socket.gethostname())

Increment stat value:

stats.inc_value('pages_crawled')

Set stat value only if greater than previous:

stats.max_value('max_items_scraped', value)

Set stat value only if lower than previous:

stats.min_value('min_free_memory_percent', value)

Get stat value:

>>> stats.get_value('pages_crawled')
8

Get all stats:

>>> stats.get_stats()
{'pages_crawled': 1238, 'start_time': datetime.datetime(2009, 7, 14, 21, 47, 28, 977139)}

4.2. Stats Collection 67

Scrapy Documentation, Release 0.18.4

4.2.2 Available Stats Collectors

Besides the basic StatsCollector there are other Stats Collectors available in Scrapy which extend the basic Stats
Collector. You can select which Stats Collector to use through the STATS_CLASS setting. The default Stats Collector
used is the MemoryStatsCollector.

MemoryStatsCollector

class scrapy.statscol.MemoryStatsCollector
A simple stats collector that keeps the stats of the last scraping run (for each spider) in memory, after they’re
closed. The stats can be accessed through the spider_stats attribute, which is a dict keyed by spider domain
name.

This is the default Stats Collector used in Scrapy.

spider_stats
A dict of dicts (keyed by spider name) containing the stats of the last scraping run for each spider.

DummyStatsCollector

class scrapy.statscol.DummyStatsCollector
A Stats collector which does nothing but is very efficient (because it does nothing). This stats collector can
be set via the STATS_CLASS setting, to disable stats collect in order to improve performance. However, the
performance penalty of stats collection is usually marginal compared to other Scrapy workload like parsing
pages.

4.3 Sending e-mail

Although Python makes sending e-mails relatively easy via the smtplib library, Scrapy provides its own facility for
sending e-mails which is very easy to use and it’s implemented using Twisted non-blocking IO, to avoid interfering
with the non-blocking IO of the crawler. It also provides a simple API for sending attachments and it’s very easy to
configure, with a few settings.

4.3.1 Quick example

There are two ways to instantiate the mail sender. You can instantiate it using the standard constructor:

from scrapy.mail import MailSender
mailer = MailSender()

Or you can instantiate it passing a Scrapy settings object, which will respect the settings:

mailer = MailSender.from_settings(settings)

And here is how to use it to send an e-mail (without attachments):

mailer.send(to=["someone@example.com"], subject="Some subject", body="Some body", cc=["another@example.com"])

4.3.2 MailSender class reference

MailSender is the preferred class to use for sending emails from Scrapy, as it uses Twisted non-blocking IO, like the
rest of the framework.

68 Chapter 4. Built-in services

http://docs.python.org/library/smtplib.html
http://twistedmatrix.com/projects/core/documentation/howto/async.html
http://twistedmatrix.com/projects/core/documentation/howto/async.html

Scrapy Documentation, Release 0.18.4

class scrapy.mail.MailSender(smtphost=None, mailfrom=None, smtpuser=None, smtppass=None,
smtpport=None)

Parameters

• smtphost (str) – the SMTP host to use for sending the emails. If omitted, the
MAIL_HOST setting will be used.

• mailfrom (str) – the address used to send emails (in the From: header). If omitted, the
MAIL_FROM setting will be used.

• smtpuser – the SMTP user. If omitted, the MAIL_USER setting will be used. If not given,
no SMTP authentication will be performed.

• smtppass (str) – the SMTP pass for authentication.

• smtpport (int) – the SMTP port to connect to

classmethod from_settings(settings)
Instantiate using a Scrapy settings object, which will respect these Scrapy settings.

Parameters settings (scrapy.settings.Settings object) – the e-mail recipients

send(to, subject, body, cc=None, attachs=())
Send email to the given recipients.

Parameters

• to (list) – the e-mail recipients

• subject (str) – the subject of the e-mail

• cc (list) – the e-mails to CC

• body (str) – the e-mail body

• attachs (iterable) – an iterable of tuples (attach_name, mimetype,
file_object) where attach_name is a string with the name that will appear on the
e-mail’s attachment, mimetype is the mimetype of the attachment and file_object
is a readable file object with the contents of the attachment

4.3.3 Mail settings

These settings define the default constructor values of the MailSender class, and can be used to configure e-mail
notifications in your project without writing any code (for those extensions and code that uses MailSender).

MAIL_FROM

Default: ’scrapy@localhost’

Sender email to use (From: header) for sending emails.

MAIL_HOST

Default: ’localhost’

SMTP host to use for sending emails.

4.3. Sending e-mail 69

Scrapy Documentation, Release 0.18.4

MAIL_PORT

Default: 25

SMTP port to use for sending emails.

MAIL_USER

Default: None

User to use for SMTP authentication. If disabled no SMTP authentication will be performed.

MAIL_PASS

Default: None

Password to use for SMTP authentication, along with MAIL_USER.

4.4 Telnet Console

Scrapy comes with a built-in telnet console for inspecting and controlling a Scrapy running process. The telnet console
is just a regular python shell running inside the Scrapy process, so you can do literally anything from it.

The telnet console is a built-in Scrapy extension which comes enabled by default, but you can also disable it if you
want. For more information about the extension itself see Telnet console extension.

4.4.1 How to access the telnet console

The telnet console listens in the TCP port defined in the TELNETCONSOLE_PORT setting, which defaults to 6023.
To access the console you need to type:

telnet localhost 6023
>>>

You need the telnet program which comes installed by default in Windows, and most Linux distros.

4.4.2 Available variables in the telnet console

The telnet console is like a regular Python shell running inside the Scrapy process, so you can do anything from it
including importing new modules, etc.

However, the telnet console comes with some default variables defined for convenience:

70 Chapter 4. Built-in services

Scrapy Documentation, Release 0.18.4

Shortcut Description
crawler the Scrapy Crawler (scrapy.crawler.Crawler object)
engine Crawler.engine attribute
spider the active spider
slot the engine slot
extensions the Extension Manager (Crawler.extensions attribute)
stats the Stats Collector (Crawler.stats attribute)
settings the Scrapy settings object (Crawler.settings attribute)
est print a report of the engine status
prefs for memory debugging (see Debugging memory leaks)
p a shortcut to the pprint.pprint function
hpy for memory debugging (see Debugging memory leaks)

4.4.3 Telnet console usage examples

Here are some example tasks you can do with the telnet console:

View engine status

You can use the est() method of the Scrapy engine to quickly show its state using the telnet console:

telnet localhost 6023
>>> est()
Execution engine status

time()-engine.start_time : 9.24237799644
engine.has_capacity() : False
engine.downloader.is_idle() : False
len(engine.downloader.slots) : 2
len(engine.downloader.active) : 16
engine.scraper.is_idle() : False

Spider: <GayotSpider 'gayotcom' at 0x2dc2b10>
engine.spider_is_idle(spider) : False
engine.slots[spider].closing : False
len(engine.slots[spider].inprogress) : 21
len(engine.slots[spider].scheduler.dqs or []) : 0
len(engine.slots[spider].scheduler.mqs) : 4453
len(engine.scraper.slot.queue) : 0
len(engine.scraper.slot.active) : 5
engine.scraper.slot.active_size : 1515069
engine.scraper.slot.itemproc_size : 0
engine.scraper.slot.needs_backout() : False

Pause, resume and stop the Scrapy engine

To pause:

telnet localhost 6023
>>> engine.pause()
>>>

To resume:

4.4. Telnet Console 71

http://docs.python.org/library/pprint.html#pprint.pprint

Scrapy Documentation, Release 0.18.4

telnet localhost 6023
>>> engine.unpause()
>>>

To stop:

telnet localhost 6023
>>> engine.stop()
Connection closed by foreign host.

4.4.4 Telnet Console signals

scrapy.telnet.update_telnet_vars(telnet_vars)
Sent just before the telnet console is opened. You can hook up to this signal to add, remove or update the
variables that will be available in the telnet local namespace. In order to do that, you need to update the
telnet_vars dict in your handler.

Parameters telnet_vars (dict) – the dict of telnet variables

4.4.5 Telnet settings

These are the settings that control the telnet console’s behaviour:

TELNETCONSOLE_PORT

Default: [6023, 6073]

The port range to use for the telnet console. If set to None or 0, a dynamically assigned port is used.

TELNETCONSOLE_HOST

Default: ’0.0.0.0’

The interface the telnet console should listen on

4.5 Web Service

Scrapy comes with a built-in web service for monitoring and controlling a running crawler. The service exposes most
resources using the JSON-RPC 2.0 protocol, but there are also other (read-only) resources which just output JSON
data.

Provides an extensible web service for managing a Scrapy process. It’s enabled by the WEBSERVICE_ENABLED
setting. The web server will listen in the port specified in WEBSERVICE_PORT, and will log to the file specified in
WEBSERVICE_LOGFILE.

The web service is a built-in Scrapy extension which comes enabled by default, but you can also disable it if you’re
running tight on memory.

72 Chapter 4. Built-in services

http://www.jsonrpc.org/

Scrapy Documentation, Release 0.18.4

4.5.1 Web service resources

The web service contains several resources, defined in the WEBSERVICE_RESOURCES setting. Each resource pro-
vides a different functionality. See Available JSON-RPC resources for a list of resources available by default.

Although you can implement your own resources using any protocol, there are two kinds of resources bundled with
Scrapy:

• Simple JSON resources - which are read-only and just output JSON data

• JSON-RPC resources - which provide direct access to certain Scrapy objects using the JSON-RPC 2.0 protocol

Available JSON-RPC resources

These are the JSON-RPC resources available by default in Scrapy:

Crawler JSON-RPC resource

class scrapy.contrib.webservice.crawler.CrawlerResource
Provides access to the main Crawler object that controls the Scrapy process.

Available by default at: http://localhost:6080/crawler

Stats Collector JSON-RPC resource

class scrapy.contrib.webservice.stats.StatsResource
Provides access to the Stats Collector used by the crawler.

Available by default at: http://localhost:6080/stats

Spider Manager JSON-RPC resource

You can access the spider manager JSON-RPC resource through the Crawler JSON-RPC resource at:
http://localhost:6080/crawler/spiders

Extension Manager JSON-RPC resource

You can access the extension manager JSON-RPC resource through the Crawler JSON-RPC resource at:
http://localhost:6080/crawler/spiders

Available JSON resources

These are the JSON resources available by default:

Engine status JSON resource

class scrapy.contrib.webservice.enginestatus.EngineStatusResource
Provides access to engine status metrics.

Available by default at: http://localhost:6080/enginestatus

4.5. Web Service 73

http://www.jsonrpc.org/
http://localhost:6080/crawler
http://localhost:6080/stats
http://localhost:6080/crawler/spiders
http://localhost:6080/crawler/spiders
http://localhost:6080/enginestatus

Scrapy Documentation, Release 0.18.4

4.5.2 Web service settings

These are the settings that control the web service behaviour:

WEBSERVICE_ENABLED

Default: True

A boolean which specifies if the web service will be enabled (provided its extension is also enabled).

WEBSERVICE_LOGFILE

Default: None

A file to use for logging HTTP requests made to the web service. If unset web the log is sent to standard scrapy log.

WEBSERVICE_PORT

Default: [6080, 7030]

The port range to use for the web service. If set to None or 0, a dynamically assigned port is used.

WEBSERVICE_HOST

Default: ’0.0.0.0’

The interface the web service should listen on

WEBSERVICE_RESOURCES

Default: {}

The list of web service resources enabled for your project. See Web service resources. These are added to the ones
available by default in Scrapy, defined in the WEBSERVICE_RESOURCES_BASE setting.

WEBSERVICE_RESOURCES_BASE

Default:

{
'scrapy.contrib.webservice.crawler.CrawlerResource': 1,
'scrapy.contrib.webservice.enginestatus.EngineStatusResource': 1,
'scrapy.contrib.webservice.stats.StatsResource': 1,

}

The list of web service resources available by default in Scrapy. You shouldn’t change this setting in your project,
change WEBSERVICE_RESOURCES instead. If you want to disable some resource set its value to None in
WEBSERVICE_RESOURCES.

74 Chapter 4. Built-in services

Scrapy Documentation, Release 0.18.4

4.5.3 Writing a web service resource

Web service resources are implemented using the Twisted Web API. See this Twisted Web guide for more information
on Twisted web and Twisted web resources.

To write a web service resource you should subclass the JsonResource or JsonRpcResource classes and
implement the renderGET method.

class scrapy.webservice.JsonResource
A subclass of twisted.web.resource.Resource that implements a JSON web service resource. See

ws_name
The name by which the Scrapy web service will known this resource, and also the path where this re-
source will listen. For example, assuming Scrapy web service is listening on http://localhost:6080/ and the
ws_name is ’resource1’ the URL for that resource will be:

http://localhost:6080/resource1/

class scrapy.webservice.JsonRpcResource(crawler, target=None)
This is a subclass of JsonResource for implementing JSON-RPC resources. JSON-RPC resources
wrap Python (Scrapy) objects around a JSON-RPC API. The resource wrapped must be returned by the
get_target() method, which returns the target passed in the constructor by default

get_target()
Return the object wrapped by this JSON-RPC resource. By default, it returns the object passed on the
constructor.

4.5.4 Examples of web service resources

StatsResource (JSON-RPC resource)

from scrapy.webservice import JsonRpcResource

class StatsResource(JsonRpcResource):

ws_name = 'stats'

def __init__(self, crawler):
JsonRpcResource.__init__(self, crawler, crawler.stats)

EngineStatusResource (JSON resource)

from scrapy.webservice import JsonResource
from scrapy.utils.engine import get_engine_status

class EngineStatusResource(JsonResource):

ws_name = 'enginestatus'

def __init__(self, crawler, spider_name=None):
JsonResource.__init__(self, crawler)
self._spider_name = spider_name
self.isLeaf = spider_name is not None

def render_GET(self, txrequest):
status = get_engine_status(self.crawler.engine)

4.5. Web Service 75

http://jcalderone.livejournal.com/50562.html
http://twistedmatrix.com/documents/10.0.0/api/twisted.web.resource.Resource.html
http://localhost:6080/
http://localhost:6080/resource1/

Scrapy Documentation, Release 0.18.4

if self._spider_name is None:
return status

for sp, st in status['spiders'].items():
if sp.name == self._spider_name:

return st

def getChild(self, name, txrequest):
return EngineStatusResource(name, self.crawler)

4.5.5 Example of web service client

scrapy-ws.py script

#!/usr/bin/env python
"""
Example script to control a Scrapy server using its JSON-RPC web service.

It only provides a reduced functionality as its main purpose is to illustrate
how to write a web service client. Feel free to improve or write you own.

Also, keep in mind that the JSON-RPC API is not stable. The recommended way for
controlling a Scrapy server is through the execution queue (see the "queue"
command).

"""

import sys, optparse, urllib, json
from urlparse import urljoin

from scrapy.utils.jsonrpc import jsonrpc_client_call, JsonRpcError

def get_commands():
return {

'help': cmd_help,
'stop': cmd_stop,
'list-available': cmd_list_available,
'list-running': cmd_list_running,
'list-resources': cmd_list_resources,
'get-global-stats': cmd_get_global_stats,
'get-spider-stats': cmd_get_spider_stats,

}

def cmd_help(args, opts):
"""help - list available commands"""
print "Available commands:"
for _, func in sorted(get_commands().items()):

print " ", func.__doc__

def cmd_stop(args, opts):
"""stop <spider> - stop a running spider"""
jsonrpc_call(opts, 'crawler/engine', 'close_spider', args[0])

def cmd_list_running(args, opts):
"""list-running - list running spiders"""
for x in json_get(opts, 'crawler/engine/open_spiders'):

print x

76 Chapter 4. Built-in services

Scrapy Documentation, Release 0.18.4

def cmd_list_available(args, opts):
"""list-available - list name of available spiders"""
for x in jsonrpc_call(opts, 'crawler/spiders', 'list'):

print x

def cmd_list_resources(args, opts):
"""list-resources - list available web service resources"""
for x in json_get(opts, '')['resources']:

print x

def cmd_get_spider_stats(args, opts):
"""get-spider-stats <spider> - get stats of a running spider"""
stats = jsonrpc_call(opts, 'stats', 'get_stats', args[0])
for name, value in stats.items():

print "%-40s %s" % (name, value)

def cmd_get_global_stats(args, opts):
"""get-global-stats - get global stats"""
stats = jsonrpc_call(opts, 'stats', 'get_stats')
for name, value in stats.items():

print "%-40s %s" % (name, value)

def get_wsurl(opts, path):
return urljoin("http://%s:%s/"% (opts.host, opts.port), path)

def jsonrpc_call(opts, path, method, *args, **kwargs):
url = get_wsurl(opts, path)
return jsonrpc_client_call(url, method, *args, **kwargs)

def json_get(opts, path):
url = get_wsurl(opts, path)
return json.loads(urllib.urlopen(url).read())

def parse_opts():
usage = "%prog [options] <command> [arg] ..."
description = "Scrapy web service control script. Use '%prog help' " \

"to see the list of available commands."
op = optparse.OptionParser(usage=usage, description=description)
op.add_option("-H", dest="host", default="localhost", \

help="Scrapy host to connect to")
op.add_option("-P", dest="port", type="int", default=6080, \

help="Scrapy port to connect to")
opts, args = op.parse_args()
if not args:

op.print_help()
sys.exit(2)

cmdname, cmdargs, opts = args[0], args[1:], opts
commands = get_commands()
if cmdname not in commands:

sys.stderr.write("Unknown command: %s\n\n" % cmdname)
cmd_help(None, None)
sys.exit(1)

return commands[cmdname], cmdargs, opts

def main():
cmd, args, opts = parse_opts()
try:

cmd(args, opts)

4.5. Web Service 77

Scrapy Documentation, Release 0.18.4

except IndexError:
print cmd.__doc__

except JsonRpcError, e:
print str(e)
if e.data:

print "Server Traceback below:"
print e.data

if __name__ == '__main__':
main()

Logging Understand the simple logging facility provided by Scrapy.

Stats Collection Collect statistics about your scraping crawler.

Sending e-mail Send email notifications when certain events occur.

Telnet Console Inspect a running crawler using a built-in Python console.

Web Service Monitor and control a crawler using a web service.

78 Chapter 4. Built-in services

CHAPTER 5

Solving specific problems

5.1 Frequently Asked Questions

5.1.1 How does Scrapy compare to BeautifulSoup or lxml?

BeautifulSoup and lxml are libraries for parsing HTML and XML. Scrapy is an application framework for writing
web spiders that crawl web sites and extract data from them.

Scrapy provides a built-in mechanism for extracting data (called selectors) but you can easily use BeautifulSoup (or
lxml) instead, if you feel more comfortable working with them. After all, they’re just parsing libraries which can be
imported and used from any Python code.

In other words, comparing BeautifulSoup (or lxml) to Scrapy is like comparing jinja2 to Django.

5.1.2 What Python versions does Scrapy support?

Scrapy runs in Python 2.6 and 2.7.

5.1.3 Does Scrapy work with Python 3.0?

No, and there are no plans to port Scrapy to Python 3.0 yet. At the moment, Scrapy works with Python 2.6 and 2.7.

See also:

What Python versions does Scrapy support?.

5.1.4 Did Scrapy “steal” X from Django?

Probably, but we don’t like that word. We think Django is a great open source project and an example to follow, so
we’ve used it as an inspiration for Scrapy.

We believe that, if something is already done well, there’s no need to reinvent it. This concept, besides being one of
the foundations for open source and free software, not only applies to software but also to documentation, procedures,
policies, etc. So, instead of going through each problem ourselves, we choose to copy ideas from those projects that
have already solved them properly, and focus on the real problems we need to solve.

We’d be proud if Scrapy serves as an inspiration for other projects. Feel free to steal from us!

79

http://www.crummy.com/software/BeautifulSoup/
http://codespeak.net/lxml/
http://www.crummy.com/software/BeautifulSoup/
http://codespeak.net/lxml/
http://www.crummy.com/software/BeautifulSoup/
http://codespeak.net/lxml/
http://jinja.pocoo.org/2/
http://www.djangoproject.com
http://www.djangoproject.com

Scrapy Documentation, Release 0.18.4

5.1.5 Does Scrapy work with HTTP proxies?

Yes. Support for HTTP proxies is provided (since Scrapy 0.8) through the HTTP Proxy downloader middleware. See
HttpProxyMiddleware.

5.1.6 How can I scrape an item with attributes in different pages?

See Passing additional data to callback functions.

5.1.7 Scrapy crashes with: ImportError: No module named win32api

You need to install pywin32 because of this Twisted bug.

5.1.8 How can I simulate a user login in my spider?

See Using FormRequest.from_response() to simulate a user login.

5.1.9 Does Scrapy crawl in breadth-first or depth-first order?

By default, Scrapy uses a LIFO queue for storing pending requests, which basically means that it crawls in DFO order.
This order is more convenient in most cases. If you do want to crawl in true BFO order, you can do it by setting the
following settings:

DEPTH_PRIORITY = 1
SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'
SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.FifoMemoryQueue'

5.1.10 My Scrapy crawler has memory leaks. What can I do?

See Debugging memory leaks.

Also, Python has a builtin memory leak issue which is described in Leaks without leaks.

5.1.11 How can I make Scrapy consume less memory?

See previous question.

5.1.12 Can I use Basic HTTP Authentication in my spiders?

Yes, see HttpAuthMiddleware.

5.1.13 Why does Scrapy download pages in English instead of my native lan-
guage?

Try changing the default Accept-Language request header by overriding the DEFAULT_REQUEST_HEADERS setting.

80 Chapter 5. Solving specific problems

http://sourceforge.net/projects/pywin32/
http://twistedmatrix.com/trac/ticket/3707
http://en.wikipedia.org/wiki/LIFO
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4

Scrapy Documentation, Release 0.18.4

5.1.14 Where can I find some example Scrapy projects?

See Examples.

5.1.15 Can I run a spider without creating a project?

Yes. You can use the runspider command. For example, if you have a spider written in a my_spider.py file
you can run it with:

scrapy runspider my_spider.py

See runspider command for more info.

5.1.16 I get “Filtered offsite request” messages. How can I fix them?

Those messages (logged with DEBUG level) don’t necessarily mean there is a problem, so you may not need to fix
them.

Those message are thrown by the Offsite Spider Middleware, which is a spider middleware (enabled by default) whose
purpose is to filter out requests to domains outside the ones covered by the spider.

For more info see: OffsiteMiddleware.

5.1.17 What is the recommended way to deploy a Scrapy crawler in production?

See Scrapyd.

5.1.18 Can I use JSON for large exports?

It’ll depend on how large your output is. See this warning in JsonItemExporter documentation.

5.1.19 Can I return (Twisted) deferreds from signal handlers?

Some signals support returning deferreds from their handlers, others don’t. See the Built-in signals reference to know
which ones.

5.1.20 What does the response status code 999 means?

999 is a custom reponse status code used by Yahoo sites to throttle requests. Try slowing down the crawling speed by
using a download delay of 2 (or higher) in your spider:

class MySpider(CrawlSpider):

name = 'myspider'

download_delay = 2

[... rest of the spider code ...]

Or by setting a global download delay in your project with the DOWNLOAD_DELAY setting.

5.1. Frequently Asked Questions 81

Scrapy Documentation, Release 0.18.4

5.1.21 Can I call pdb.set_trace() from my spiders to debug them?

Yes, but you can also use the Scrapy shell which allows you too quickly analyze (and even modify) the response being
processed by your spider, which is, quite often, more useful than plain old pdb.set_trace().

For more info see Invoking the shell from spiders to inspect responses.

5.1.22 Simplest way to dump all my scraped items into a JSON/CSV/XML file?

To dump into a JSON file:

scrapy crawl myspider -o items.json -t json

To dump into a CSV file:

scrapy crawl myspider -o items.csv -t csv

To dump into a XML file:

scrapy crawl myspider -o items.xml -t xml

For more information see Feed exports

5.1.23 What’s this huge cryptic __VIEWSTATE parameter used in some forms?

The __VIEWSTATE parameter is used in sites built with ASP.NET/VB.NET. For more info on how it works see this
page. Also, here’s an example spider which scrapes one of these sites.

5.1.24 What’s the best way to parse big XML/CSV data feeds?

Parsing big feeds with XPath selectors can be problematic since they need to build the DOM of the entire feed in
memory, and this can be quite slow and consume a lot of memory.

In order to avoid parsing all the entire feed at once in memory, you can use the functions xmliter and csviter
from scrapy.utils.iterators module. In fact, this is what the feed spiders (see Spiders) use under the cover.

5.1.25 Does Scrapy manage cookies automatically?

Yes, Scrapy receives and keeps track of cookies sent by servers, and sends them back on subsequent requests, like any
regular web browser does.

For more info see Requests and Responses and CookiesMiddleware.

5.1.26 How can I see the cookies being sent and received from Scrapy?

Enable the COOKIES_DEBUG setting.

5.1.27 How can I instruct a spider to stop itself?

Raise the CloseSpider exception from a callback. For more info see: CloseSpider.

82 Chapter 5. Solving specific problems

http://search.cpan.org/~ecarroll/HTML-TreeBuilderX-ASP_NET-0.09/lib/HTML/TreeBuilderX/ASP_NET.pm
http://search.cpan.org/~ecarroll/HTML-TreeBuilderX-ASP_NET-0.09/lib/HTML/TreeBuilderX/ASP_NET.pm
http://github.com/AmbientLighter/rpn-fas/blob/master/fas/spiders/rnp.py

Scrapy Documentation, Release 0.18.4

5.1.28 How can I prevent my Scrapy bot from getting banned?

See Avoiding getting banned.

5.1.29 Should I use spider arguments or settings to configure my spider?

Both spider arguments and settings can be used to configure your spider. There is no strict rule that mandates to use
one or the other, but settings are more suited for parameters that, once set, don’t change much, while spider arguments
are meant to change more often, even on each spider run and sometimes are required for the spider to run at all (for
example, to set the start url of a spider).

To illustrate with an example, assuming you have a spider that needs to log into a site to scrape data, and you only
want to scrape data from a certain section of the site (which varies each time). In that case, the credentials to log in
would be settings, while the url of the section to scrape would be a spider argument.

5.1.30 I’m scraping a XML document and my XPath selector doesn’t return any
items

You may need to remove namespaces. See Removing namespaces.

5.1.31 I’m getting an error: “cannot import name crawler”

This is caused by Scrapy changes due to the singletons removal. The error is most likely raised by a module (exten-
sion, middleware, pipeline or spider) in your Scrapy project that imports crawler from scrapy.project. For
example:

from scrapy.project import crawler

class SomeExtension(object):
def __init__(self):

self.crawler = crawler
...

This way to access the crawler object is deprecated, the code should be ported to use from_crawler class method,
for example:

class SomeExtension(object):

@classmethod
def from_crawler(cls, crawler):

o = cls()
o.crawler = crawler
return o

Scrapy command line tool has some backwards compatibility in place to support the old import mechanism (with a
deprecation warning), but this mechanism may not work if you use Scrapy differently (for example, as a library).

5.2 Debugging Spiders

This document explains the most common techniques for debugging spiders. Consider the following scrapy spider
below:

5.2. Debugging Spiders 83

Scrapy Documentation, Release 0.18.4

class MySpider(BaseSpider):
name = 'myspider'
start_urls = (

'http://example.com/page1',
'http://example.com/page2',
)

def parse(self, response):
collect `item_urls`
for item_url in item_urls:

yield Request(url=item_url, callback=self.parse_item)

def parse_item(self, response):
item = MyItem()
populate `item` fields
yield Request(url=item_details_url, meta={'item': item},

callback=self.parse_details)

def parse_details(self, response):
item = response.meta['item']
populate more `item` fields
return item

Basically this is a simple spider which parses two pages of items (the start_urls). Items also have a details page with
additional information, so we use the meta functionality of Request to pass a partially populated item.

5.2.1 Parse Command

The most basic way of checking the output of your spider is to use the parse command. It allows to check the
behaviour of different parts of the spider at the method level. It has the advantage of being flexible and simple to use,
but does not allow debugging code inside a method.

In order to see the item scraped from a specific url:

$ scrapy parse --spider=myspider -c parse_item -d 2 <item_url>
[... scrapy log lines crawling example.com spider ...]

>>> STATUS DEPTH LEVEL 2 <<<
Scraped Items --
[{'url': <item_url>}]

Requests ---
[]

Using the --verbose or -v option we can see the status at each depth level:

$ scrapy parse --spider=myspider -c parse_item -d 2 -v <item_url>
[... scrapy log lines crawling example.com spider ...]

>>> DEPTH LEVEL: 1 <<<
Scraped Items --
[]

Requests ---
[<GET item_details_url>]

>>> DEPTH LEVEL: 2 <<<

84 Chapter 5. Solving specific problems

Scrapy Documentation, Release 0.18.4

Scraped Items --
[{'url': <item_url>}]

Requests ---
[]

Checking items scraped from a single start_url, can also be easily achieved using:

$ scrapy parse --spider=myspider -d 3 'http://example.com/page1'

5.2.2 Scrapy Shell

While the parse command is very useful for checking behaviour of a spider, it is of little help to check what hap-
pens inside a callback, besides showing the response received and the output. How to debug the situation when
parse_details sometimes receives no item?

Fortunately, the shell is your bread and butter in this case (see Invoking the shell from spiders to inspect responses):

from scrapy.shell import inspect_response

def parse_details(self, response):
item = response.meta.get('item', None)
if item:

populate more `item` fields
return item

else:
inspect_response(response, self)

See also: Invoking the shell from spiders to inspect responses.

5.2.3 Open in browser

Sometimes you just want to see how a certain response looks in a browser, you can use the open_in_browser
function for that. Here is an example of how you would use it:

from scrapy.utils.response import open_in_browser

def parse_details(self, response):
if "item name" not in response.body:

open_in_browser(response)

open_in_browser will open a browser with the response received by Scrapy at that point, adjusting the base tag
so that images and styles are displayed properly.

5.2.4 Logging

Logging is another useful option for getting information about your spider run. Although not as convenient, it comes
with the advantage that the logs will be available in all future runs should they be necessary again:

from scrapy import log

def parse_details(self, response):
item = response.meta.get('item', None)
if item:

populate more `item` fields

5.2. Debugging Spiders 85

http://www.w3schools.com/tags/tag_base.asp

Scrapy Documentation, Release 0.18.4

return item
else:

self.log('No item received for %s' % response.url,
level=log.WARNING)

For more information, check the Logging section.

5.3 Spiders Contracts

New in version 0.15.

Note: This is a new feature (introduced in Scrapy 0.15) and may be subject to minor functionality/API updates.
Check the release notes to be notified of updates.

Testing spiders can get particularly annoying and while nothing prevents you from writing unit tests the task gets
cumbersome quickly. Scrapy offers an integrated way of testing your spiders by the means of contracts.

This allows you to test each callback of your spider by hardcoding a sample url and check various constraints for
how the callback processes the response. Each contract is prefixed with an @ and included in the docstring. See the
following example:

def parse(self, response):
""" This function parses a sample response. Some contracts are mingled
with this docstring.

@url http://www.amazon.com/s?field-keywords=selfish+gene
@returns items 1 16
@returns requests 0 0
@scrapes Title Author Year Price
"""

This callback is tested using three built-in contracts:

class scrapy.contracts.default.UrlContract
This contract (@url) sets the sample url used when checking other contract conditions for this spider. This
contract is mandatory. All callbacks lacking this contract are ignored when running the checks:

@url url

class scrapy.contracts.default.ReturnsContract
This contract (@returns) sets lower and upper bounds for the items and requests returned by the spider. The
upper bound is optional:

@returns item(s)|request(s) [min [max]]

class scrapy.contracts.default.ScrapesContract
This contract (@scrapes) checks that all the items returned by the callback have the specified fields:

@scrapes field_1 field_2 ...

Use the check command to run the contract checks.

86 Chapter 5. Solving specific problems

Scrapy Documentation, Release 0.18.4

5.3.1 Custom Contracts

If you find you need more power than the built-in scrapy contracts you can create and load your own contracts in the
project by using the SPIDER_CONTRACTS setting:

SPIDER_CONTRACTS = {
'myproject.contracts.ResponseCheck': 10,
'myproject.contracts.ItemValidate': 10,

}

Each contract must inherit from scrapy.contracts.Contract and can override three methods:

class scrapy.contracts.Contract(method, *args)

Parameters

• method (function) – callback function to which the contract is associated

• args (list) – list of arguments passed into the docstring (whitespace separated)

adjust_request_args(args)
This receives a dict as an argument containing default arguments for Request object. Must return the
same or a modified version of it.

pre_process(response)
This allows hooking in various checks on the response received from the sample request, before it’s being
passed to the callback.

post_process(output)
This allows processing the output of the callback. Iterators are converted listified before being passed to
this hook.

Here is a demo contract which checks the presence of a custom header in the response received. Raise
scrapy.exceptions.ContractFail in order to get the failures pretty printed:

from scrapy.contracts import Contract
from scrapy.exceptions import ContractFail

class HasHeaderContract(Contract):
""" Demo contract which checks the presence of a custom header

@has_header X-CustomHeader
"""

name = 'has_header'

def pre_process(self, response):
for header in self.args:

if header not in response.headers:
raise ContractFail('X-CustomHeader not present')

5.4 Common Practices

This section documents common practices when using Scrapy. These are things that cover many topics and don’t often
fall into any other specific section.

5.4.1 Run Scrapy from a script

You can use the API to run Scrapy from a script, instead of the typical way of running Scrapy via scrapy crawl.

5.4. Common Practices 87

Scrapy Documentation, Release 0.18.4

Remember that Scrapy is built on top of the Twisted asynchronous networking library, so you need run it inside the
Twisted reactor.

Note that you will also have to shutdown the Twisted reactor yourself after the spider is finished. This can be achieved
by connecting a handler to the signals.spider_closed signal.

What follows is a working example of how to do that, using the testspiders project as example.

from twisted.internet import reactor
from scrapy.crawler import Crawler
from scrapy.settings import Settings
from scrapy import log, signals
from testspiders.spiders.followall import FollowAllSpider

spider = FollowAllSpider(domain='scrapinghub.com')
crawler = Crawler(Settings())
crawler.signals.connect(reactor.stop, signal=signals.spider_closed)
crawler.configure()
crawler.crawl(spider)
crawler.start()
log.start()
reactor.run() # the script will block here until the spider_closed signal was sent

See also:

Twisted Reactor Overview.

5.4.2 Running multiple spiders in the same process

By default, Scrapy runs a single spider per process when you run scrapy crawl. However, Scrapy supports running
multiple spiders per process using the internal API.

Here is an example, using the testspiders project:

from twisted.internet import reactor
from scrapy.crawler import Crawler
from scrapy.settings import Settings
from scrapy import log
from testspiders.spiders.followall import FollowAllSpider

def setup_crawler(domain):
spider = FollowAllSpider(domain=domain)
crawler = Crawler(Settings())
crawler.configure()
crawler.crawl(spider)
crawler.start()

for domain in ['scrapinghub.com', 'insophia.com']:
setup_crawler(domain)

log.start()
reactor.run()

See also:

Run Scrapy from a script.

88 Chapter 5. Solving specific problems

https://github.com/scrapinghub/testspiders
http://twistedmatrix.com/documents/current/core/howto/reactor-basics.html
https://github.com/scrapinghub/testspiders

Scrapy Documentation, Release 0.18.4

5.4.3 Distributed crawls

Scrapy doesn’t provide any built-in facility for running crawls in a distribute (multi-server) manner. However, there
are some ways to distribute crawls, which vary depending on how you plan to distribute them.

If you have many spiders, the obvious way to distribute the load is to setup many Scrapyd instances and distribute
spider runs among those.

If you instead want to run a single (big) spider through many machines, what you usually do is partition the urls to
crawl and send them to each separate spider. Here is a concrete example:

First, you prepare the list of urls to crawl and put them into separate files/urls:

http://somedomain.com/urls-to-crawl/spider1/part1.list
http://somedomain.com/urls-to-crawl/spider1/part2.list
http://somedomain.com/urls-to-crawl/spider1/part3.list

Then you fire a spider run on 3 different Scrapyd servers. The spider would receive a (spider) argument part with
the number of the partition to crawl:

curl http://scrapy1.mycompany.com:6800/schedule.json -d project=myproject -d spider=spider1 -d part=1
curl http://scrapy2.mycompany.com:6800/schedule.json -d project=myproject -d spider=spider1 -d part=2
curl http://scrapy3.mycompany.com:6800/schedule.json -d project=myproject -d spider=spider1 -d part=3

5.4.4 Avoiding getting banned

Some websites implement certain measures to prevent bots from crawling them, with varying degrees of sophistication.
Getting around those measures can be difficult and tricky, and may sometimes require special infrastructure. Please
consider contacting commercial support if in doubt.

Here are some tips to keep in mind when dealing with these kind of sites:

• rotate your user agent from a pool of well-known ones from browsers (google around to get a list of them)

• disable cookies (see COOKIES_ENABLED) as some sites may use cookies to spot bot behaviour

• use download delays (2 or higher). See DOWNLOAD_DELAY setting.

• if possible, use Google cache to fetch pages, instead of hitting the sites directly

• use a pool of rotating IPs. For example, the free Tor project or paid services like ProxyMesh

• use a highly distributed downloader that circumvents bans internally, so you can just focus on parsing clean
pages. One example of such downloaders is Crawlera

If you are still unable to prevent your bot getting banned, consider contacting commercial support.

5.5 Broad Crawls

Scrapy defaults are optimized for crawling specific sites. These sites are often handled by a single Scrapy spider,
although this is not necessary or required (for example, there are generic spiders that handle any given site thrown at
them).

In addition to this “focused crawl”, there is another common type of crawling which covers a large (potentially un-
limited) number of domains, and is only limited by time or other arbitrary constraint, rather than stopping when the
domain was crawled to completion or when there are no more requests to perform. These are called “broad crawls”
and is the typical crawlers employed by search engines.

These are some common properties often found in broad crawls:

5.5. Broad Crawls 89

http://scrapy.org/support/
http://www.googleguide.com/cached_pages.html
https://www.torproject.org/
http://proxymesh.com/
http://crawlera.com
http://scrapy.org/support/

Scrapy Documentation, Release 0.18.4

• they crawl many domains (often, unbounded) instead of a specific set of sites

• they don’t necessarily crawl domains to completion, because it would impractical (or impossible) to do so, and
instead limit the crawl by time or number of pages crawled

• they are simpler in logic (as opposed to very complex spiders with many extraction rules) because data is often
post-processed in a separate stage

• they crawl many domains concurrently, which allows them to achieve faster crawl speeds by not being limited
by any particular site constraint (each site is crawled slowly to respect politeness, but many sites are crawled in
parallel)

As said above, Scrapy default settings are optimized for focused crawls, not broad crawls. However, due to its asyn-
chronous architecture, Scrapy is very well suited for performing fast broad crawls. This page summarize some things
you need to keep in mind when using Scrapy for doing broad crawls, along with concrete suggestions of Scrapy
settings to tune in order to achieve an efficient broad crawl.

5.5.1 Increase concurrency

Concurrency is the number of requests that are processed in parallel. There is a global limit and a per-domain limit.

The default global concurrency limit in Scrapy is not suitable for crawling many different domains in parallel, so you
will want to increase it. How much to increase it will depend on how much CPU you crawler will have available. A
good starting point is 100, but the best way to find out is by doing some trials and identifying at what concurrency
your Scrapy process gets CPU bounded. For optimum performance, You should pick a concurrency where CPU usage
is at 80-90%.

To increase the global concurrency use:

CONCURRENT_REQUESTS = 100

5.5.2 Reduce log level

When doing broad crawls you are often only interested in the crawl rates you get and any errors found. These stats are
reported by Scrapy when using the INFO log level. In order to save CPU (and log storage requirements) you should
not use DEBUG log level when preforming large broad crawls in production. Using DEBUG level when developing
your (broad) crawler may fine though.

To set the log level use:

LOG_LEVEL = 'INFO'

5.5.3 Disable cookies

Disable cookies unless you really need. Cookies are often not needed when doing broad crawls (search engine crawlers
ignore them), and they improve performance by saving some CPU cycles and reducing the memory footprint of your
Scrapy crawler.

To disable cookies use:

COOKIES_ENABLED = False

90 Chapter 5. Solving specific problems

Scrapy Documentation, Release 0.18.4

5.5.4 Disable retries

Retrying failed HTTP requests can slow down the crawls substantially, specially when sites causes are very slow (or
fail) to respond, thus causing a timeout error which gets retried many times, unnecessarily, preventing crawler capacity
to be reused for other domains.

To disable retries use:

RETRY_ENABLED = False

5.5.5 Reduce download timeout

Unless you are crawling from a very slow connection (which shouldn’t be the case for broad crawls) reduce the
download timeout so that stuck requests are discarded quickly and free up capacity to process the next ones.

To reduce the download timeout use:

DOWNLOAD_TIMEOUT = 15

5.5.6 Disable redirects

Consider disabling redirects, unless you are interested in following them. When doing broad crawls it’s common to
save redirects and resolve them when revisiting the site at a later crawl. This also help to keep the number of request
constant per crawl batch, otherwise redirect loops may cause the crawler to dedicate too many resources on any specific
domain.

To disable redirects use:

REDIRECT_ENABLED = False

5.6 Using Firefox for scraping

Here is a list of tips and advice on using Firefox for scraping, along with a list of useful Firefox add-ons to ease the
scraping process.

5.6.1 Caveats with inspecting the live browser DOM

Since Firefox add-ons operate on a live browser DOM, what you’ll actually see when inspecting the page source is not
the original HTML, but a modified one after applying some browser clean up and executing Javascript code. Firefox,
in particular, is known for adding <tbody> elements to tables. Scrapy, on the other hand, does not modify the original
page HTML, so you won’t be able to extract any data if you use <tbody in your XPath expressions.

Therefore, you should keep in mind the following things when working with Firefox and XPath:

• Disable Firefox Javascript while inspecting the DOM looking for XPaths to be used in Scrapy

• Never use full XPath paths, use relative and clever ones based on attributes (such as id, class, width, etc)
or any identifying features like contains(@href, ’image’).

• Never include <tbody> elements in your XPath expressions unless you really know what you’re doing

5.6. Using Firefox for scraping 91

Scrapy Documentation, Release 0.18.4

5.6.2 Useful Firefox add-ons for scraping

Firebug

Firebug is a widely known tool among web developers and it’s also very useful for scraping. In particular, its Inspect
Element feature comes very handy when you need to construct the XPaths for extracting data because it allows you to
view the HTML code of each page element while moving your mouse over it.

See Using Firebug for scraping for a detailed guide on how to use Firebug with Scrapy.

XPather

XPather allows you to test XPath expressions directly on the pages.

XPath Checker

XPath Checker is another Firefox add-on for testing XPaths on your pages.

Tamper Data

Tamper Data is a Firefox add-on which allows you to view and modify the HTTP request headers sent by Firefox.
Firebug also allows to view HTTP headers, but not to modify them.

Firecookie

Firecookie makes it easier to view and manage cookies. You can use this extension to create a new cookie, delete
existing cookies, see a list of cookies for the current site, manage cookies permissions and a lot more.

5.7 Using Firebug for scraping

Note: Google Directory, the example website used in this guide is no longer available as it has been shut down by
Google. The concepts in this guide are still valid though. If you want to update this guide to use a new (working) site,
your contribution will be more than welcome!. See Contributing to Scrapy for information on how to do so.

5.7.1 Introduction

This document explains how to use Firebug (a Firefox add-on) to make the scraping process easier and more fun.
For other useful Firefox add-ons see Useful Firefox add-ons for scraping. There are some caveats with using Firefox
add-ons to inspect pages, see Caveats with inspecting the live browser DOM.

In this example, we’ll show how to use Firebug to scrape data from the Google Directory, which contains the same
data as the Open Directory Project used in the tutorial but with a different face.

Firebug comes with a very useful feature called Inspect Element which allows you to inspect the HTML code of the
different page elements just by hovering your mouse over them. Otherwise you would have to search for the tags
manually through the HTML body which can be a very tedious task.

In the following screenshot you can see the Inspect Element tool in action.

92 Chapter 5. Solving specific problems

http://getfirebug.com
http://www.youtube.com/watch?v=-pT_pDe54aA
http://www.youtube.com/watch?v=-pT_pDe54aA
https://addons.mozilla.org/firefox/addon/1192
https://addons.mozilla.org/firefox/addon/1095
http://addons.mozilla.org/firefox/addon/966
https://addons.mozilla.org/firefox/addon/6683
http://searchenginewatch.com/article/2096661/Google-Directory-Has-Been-Shut-Down
http://searchenginewatch.com/article/2096661/Google-Directory-Has-Been-Shut-Down
http://getfirebug.com
http://getfirebug.com
http://directory.google.com/
http://www.dmoz.org
http://www.youtube.com/watch?v=-pT_pDe54aA
http://www.youtube.com/watch?v=-pT_pDe54aA

Scrapy Documentation, Release 0.18.4

At first sight, we can see that the directory is divided in categories, which are also divided in subcategories.

However, it seems that there are more subcategories than the ones being shown in this page, so we’ll keep looking:

5.7. Using Firebug for scraping 93

Scrapy Documentation, Release 0.18.4

As expected, the subcategories contain links to other subcategories, and also links to actual websites, which is the
purpose of the directory.

5.7.2 Getting links to follow

By looking at the category URLs we can see they share a pattern:

http://directory.google.com/Category/Subcategory/Another_Subcategory

Once we know that, we are able to construct a regular expression to follow those links. For example, the following
one:

directory\.google\.com/[A-Z][a-zA-Z_/]+$

So, based on that regular expression we can create the first crawling rule:

Rule(SgmlLinkExtractor(allow='directory.google.com/[A-Z][a-zA-Z_/]+$',),
'parse_category',
follow=True,

),

The Rule object instructs CrawlSpider based spiders how to follow the category links. parse_category will
be a method of the spider which will process and extract data from those pages.

This is how the spider would look so far:

from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
from scrapy.contrib.spiders import CrawlSpider, Rule

94 Chapter 5. Solving specific problems

http://directory.google.com/Category/Subcategory/Another_Subcategory

Scrapy Documentation, Release 0.18.4

class GoogleDirectorySpider(CrawlSpider):
name = 'directory.google.com'
allowed_domains = ['directory.google.com']
start_urls = ['http://directory.google.com/']

rules = (
Rule(SgmlLinkExtractor(allow='directory\.google\.com/[A-Z][a-zA-Z_/]+$'),

'parse_category', follow=True,
),

)

def parse_category(self, response):
write the category page data extraction code here
pass

5.7.3 Extracting the data

Now we’re going to write the code to extract data from those pages.

With the help of Firebug, we’ll take a look at some page containing links to websites (say
http://directory.google.com/Top/Arts/Awards/) and find out how we can extract those links using XPath selec-
tors. We’ll also use the Scrapy shell to test those XPath’s and make sure they work as we expect.

5.7. Using Firebug for scraping 95

http://directory.google.com/Top/Arts/Awards/

Scrapy Documentation, Release 0.18.4

As you can see, the page markup is not very descriptive: the elements don’t contain id, class or any attribute that
clearly identifies them, so we’‘ll use the ranking bars as a reference point to select the data to extract when we construct
our XPaths.

After using FireBug, we can see that each link is inside a td tag, which is itself inside a tr tag that also contains the
link’s ranking bar (in another td).

So we can select the ranking bar, then find its parent (the tr), and then finally, the link’s td (which contains the data
we want to scrape).

This results in the following XPath:

//td[descendant::a[contains(@href, "#pagerank")]]/following-sibling::td//a

It’s important to use the Scrapy shell to test these complex XPath expressions and make sure they work as expected.

Basically, that expression will look for the ranking bar’s td element, and then select any td element who has a
descendant a element whose href attribute contains the string #pagerank“

Of course, this is not the only XPath, and maybe not the simpler one to select that data. Another approach could be,
for example, to find any font tags that have that grey colour of the links,

Finally, we can write our parse_category() method:

def parse_category(self, response):
hxs = HtmlXPathSelector(response)

The path to website links in directory page
links = hxs.select('//td[descendant::a[contains(@href, "#pagerank")]]/following-sibling::td/font')

for link in links:
item = DirectoryItem()
item['name'] = link.select('a/text()').extract()
item['url'] = link.select('a/@href').extract()
item['description'] = link.select('font[2]/text()').extract()
yield item

Be aware that you may find some elements which appear in Firebug but not in the original HTML, such as the typical
case of <tbody> elements.

or tags which Therefer in page HTML sources may on Firebug inspects the live DOM

5.8 Debugging memory leaks

In Scrapy, objects such as Requests, Responses and Items have a finite lifetime: they are created, used for a while, and
finally destroyed.

From all those objects, the Request is probably the one with the longest lifetime, as it stays waiting in the Scheduler
queue until it’s time to process it. For more info see Architecture overview.

As these Scrapy objects have a (rather long) lifetime, there is always the risk of accumulating them in memory without
releasing them properly and thus causing what is known as a “memory leak”.

To help debugging memory leaks, Scrapy provides a built-in mechanism for tracking objects references called trackref ,
and you can also use a third-party library called Guppy for more advanced memory debugging (see below for more
info). Both mechanisms must be used from the Telnet Console.

96 Chapter 5. Solving specific problems

Scrapy Documentation, Release 0.18.4

5.8.1 Common causes of memory leaks

It happens quite often (sometimes by accident, sometimes on purpose) that the Scrapy developer passes objects refer-
enced in Requests (for example, using the meta attribute or the request callback function) and that effectively bounds
the lifetime of those referenced objects to the lifetime of the Request. This is, by far, the most common cause of
memory leaks in Scrapy projects, and a quite difficult one to debug for newcomers.

In big projects, the spiders are typically written by different people and some of those spiders could be “leaking” and
thus affecting the rest of the other (well-written) spiders when they get to run concurrently, which, in turn, affects the
whole crawling process.

At the same time, it’s hard to avoid the reasons that cause these leaks without restricting the power of the framework,
so we have decided not to restrict the functionally but provide useful tools for debugging these leaks, which quite often
consist in an answer to the question: which spider is leaking?.

The leak could also come from a custom middleware, pipeline or extension that you have written, if you are not releas-
ing the (previously allocated) resources properly. For example, if you’re allocating resources on spider_opened
but not releasing them on spider_closed.

5.8.2 Debugging memory leaks with trackref

trackref is a module provided by Scrapy to debug the most common cases of memory leaks. It basically tracks the
references to all live Requests, Responses, Item and Selector objects.

You can enter the telnet console and inspect how many objects (of the classes mentioned above) are currently alive
using the prefs() function which is an alias to the print_live_refs() function:

telnet localhost 6023

>>> prefs()
Live References

ExampleSpider 1 oldest: 15s ago
HtmlResponse 10 oldest: 1s ago
XPathSelector 2 oldest: 0s ago
FormRequest 878 oldest: 7s ago

As you can see, that report also shows the “age” of the oldest object in each class.

If you do have leaks, chances are you can figure out which spider is leaking by looking at the oldest request or response.
You can get the oldest object of each class using the get_oldest() function like this (from the telnet console).

Which objects are tracked?

The objects tracked by trackrefs are all from these classes (and all its subclasses):

• scrapy.http.Request

• scrapy.http.Response

• scrapy.item.Item

• scrapy.selector.XPathSelector

• scrapy.spider.BaseSpider

• scrapy.selector.document.Libxml2Document

5.8. Debugging memory leaks 97

Scrapy Documentation, Release 0.18.4

A real example

Let’s see a concrete example of an hypothetical case of memory leaks.

Suppose we have some spider with a line similar to this one:

return Request("http://www.somenastyspider.com/product.php?pid=%d" % product_id,
callback=self.parse, meta={referer: response}")

That line is passing a response reference inside a request which effectively ties the response lifetime to the requests’
one, and that would definitely cause memory leaks.

Let’s see how we can discover which one is the nasty spider (without knowing it a-priori, of course) by using the
trackref tool.

After the crawler is running for a few minutes and we notice its memory usage has grown a lot, we can enter its telnet
console and check the live references:

>>> prefs()
Live References

SomenastySpider 1 oldest: 15s ago
HtmlResponse 3890 oldest: 265s ago
XPathSelector 2 oldest: 0s ago
Request 3878 oldest: 250s ago

The fact that there are so many live responses (and that they’re so old) is definitely suspicious, as responses should
have a relatively short lifetime compared to Requests. So let’s check the oldest response:

>>> from scrapy.utils.trackref import get_oldest
>>> r = get_oldest('HtmlResponse')
>>> r.url
'http://www.somenastyspider.com/product.php?pid=123'

There it is. By looking at the URL of the oldest response we can see it belongs to the somenastyspider.com
spider. We can now go and check the code of that spider to discover the nasty line that is generating the leaks (passing
response references inside requests).

If you want to iterate over all objects, instead of getting the oldest one, you can use the iter_all() function:

>>> from scrapy.utils.trackref import iter_all
>>> [r.url for r in iter_all('HtmlResponse')]
['http://www.somenastyspider.com/product.php?pid=123',
'http://www.somenastyspider.com/product.php?pid=584',

...

Too many spiders?

If your project has too many spiders, the output of prefs() can be difficult to read. For this reason, that function has
a ignore argument which can be used to ignore a particular class (and all its subclases). For example, using:

>>> from scrapy.spider import BaseSpider
>>> prefs(ignore=BaseSpider)

Won’t show any live references to spiders.

scrapy.utils.trackref module

Here are the functions available in the trackref module.

98 Chapter 5. Solving specific problems

Scrapy Documentation, Release 0.18.4

class scrapy.utils.trackref.object_ref
Inherit from this class (instead of object) if you want to track live instances with the trackref module.

scrapy.utils.trackref.print_live_refs(class_name, ignore=NoneType)
Print a report of live references, grouped by class name.

Parameters ignore (class or classes tuple) – if given, all objects from the specified
class (or tuple of classes) will be ignored.

scrapy.utils.trackref.get_oldest(class_name)
Return the oldest object alive with the given class name, or None if none is found. Use print_live_refs()
first to get a list of all tracked live objects per class name.

scrapy.utils.trackref.iter_all(class_name)
Return an iterator over all objects alive with the given class name, or None if none is found. Use
print_live_refs() first to get a list of all tracked live objects per class name.

5.8.3 Debugging memory leaks with Guppy

trackref provides a very convenient mechanism for tracking down memory leaks, but it only keeps track of the
objects that are more likely to cause memory leaks (Requests, Responses, Items, and Selectors). However, there are
other cases where the memory leaks could come from other (more or less obscure) objects. If this is your case, and
you can’t find your leaks using trackref, you still have another resource: the Guppy library.

If you use setuptools, you can install Guppy with the following command:

easy_install guppy

The telnet console also comes with a built-in shortcut (hpy) for accessing Guppy heap objects. Here’s an example to
view all Python objects available in the heap using Guppy:

>>> x = hpy.heap()
>>> x.bytype
Partition of a set of 297033 objects. Total size = 52587824 bytes.
Index Count % Size % Cumulative % Type

0 22307 8 16423880 31 16423880 31 dict
1 122285 41 12441544 24 28865424 55 str
2 68346 23 5966696 11 34832120 66 tuple
3 227 0 5836528 11 40668648 77 unicode
4 2461 1 2222272 4 42890920 82 type
5 16870 6 2024400 4 44915320 85 function
6 13949 5 1673880 3 46589200 89 types.CodeType
7 13422 5 1653104 3 48242304 92 list
8 3735 1 1173680 2 49415984 94 _sre.SRE_Pattern
9 1209 0 456936 1 49872920 95 scrapy.http.headers.Headers

<1676 more rows. Type e.g. '_.more' to view.>

You can see that most space is used by dicts. Then, if you want to see from which attribute those dicts are referenced,
you could do:

>>> x.bytype[0].byvia
Partition of a set of 22307 objects. Total size = 16423880 bytes.
Index Count % Size % Cumulative % Referred Via:

0 10982 49 9416336 57 9416336 57 '.__dict__'
1 1820 8 2681504 16 12097840 74 '.__dict__', '.func_globals'
2 3097 14 1122904 7 13220744 80
3 990 4 277200 2 13497944 82 "['cookies']"
4 987 4 276360 2 13774304 84 "['cache']"
5 985 4 275800 2 14050104 86 "['meta']"

5.8. Debugging memory leaks 99

http://pypi.python.org/pypi/guppy

Scrapy Documentation, Release 0.18.4

6 897 4 251160 2 14301264 87 '[2]'
7 1 0 196888 1 14498152 88 "['moduleDict']", "['modules']"
8 672 3 188160 1 14686312 89 "['cb_kwargs']"
9 27 0 155016 1 14841328 90 '[1]'

<333 more rows. Type e.g. '_.more' to view.>

As you can see, the Guppy module is very powerful but also requires some deep knowledge about Python internals.
For more info about Guppy, refer to the Guppy documentation.

5.8.4 Leaks without leaks

Sometimes, you may notice that the memory usage of your Scrapy process will only increase, but never decrease.
Unfortunately, this could happen even though neither Scrapy nor your project are leaking memory. This is due to a
(not so well) known problem of Python, which may not return released memory to the operating system in some cases.
For more information on this issue see:

• Python Memory Management

• Python Memory Management Part 2

• Python Memory Management Part 3

The improvements proposed by Evan Jones, which are detailed in this paper, got merged in Python 2.5, but this only
reduces the problem, it doesn’t fix it completely. To quote the paper:

Unfortunately, this patch can only free an arena if there are no more objects allocated in it anymore. This
means that fragmentation is a large issue. An application could have many megabytes of free memory,
scattered throughout all the arenas, but it will be unable to free any of it. This is a problem experienced
by all memory allocators. The only way to solve it is to move to a compacting garbage collector, which is
able to move objects in memory. This would require significant changes to the Python interpreter.

This problem will be fixed in future Scrapy releases, where we plan to adopt a new process model and run spiders in a
pool of recyclable sub-processes.

5.9 Downloading Item Images

Scrapy provides an item pipeline for downloading images attached to a particular item, for example, when you scrape
products and also want to download their images locally.

This pipeline, called the Images Pipeline and implemented in the ImagesPipeline class, provides a convenient
way for downloading and storing images locally with some additional features:

• Convert all downloaded images to a common format (JPG) and mode (RGB)

• Avoid re-downloading images which were downloaded recently

• Thumbnail generation

• Check images width/height to make sure they meet a minimum constraint

This pipeline also keeps an internal queue of those images which are currently being scheduled for download, and
connects those items that arrive containing the same image, to that queue. This avoids downloading the same image
more than once when it’s shared by several items.

The Python Imaging Library is used for thumbnailing and normalizing images to JPEG/RGB format, so you need to
install that library in order to use the images pipeline.

100 Chapter 5. Solving specific problems

http://guppy-pe.sourceforge.net/
http://evanjones.ca/python-memory.html
http://evanjones.ca/python-memory-part2.html
http://evanjones.ca/python-memory-part3.html
http://evanjones.ca/memoryallocator/
http://www.pythonware.com/products/pil/

Scrapy Documentation, Release 0.18.4

5.9.1 Using the Images Pipeline

The typical workflow, when using the ImagesPipeline goes like this:

1. In a Spider, you scrape an item and put the URLs of its images into a image_urls field.

2. The item is returned from the spider and goes to the item pipeline.

3. When the item reaches the ImagesPipeline, the URLs in the image_urls field are scheduled for down-
load using the standard Scrapy scheduler and downloader (which means the scheduler and downloader middle-
wares are reused), but with a higher priority, processing them before other pages are scraped. The item remains
“locked” at that particular pipeline stage until the images have finish downloading (or fail for some reason).

4. When the images are downloaded another field (images) will be populated with the results. This field will
contain a list of dicts with information about the images downloaded, such as the downloaded path, the original
scraped url (taken from the image_urls field) , and the image checksum. The images in the list of the
images field will retain the same order of the original image_urls field. If some image failed downloading,
an error will be logged and the image won’t be present in the images field.

5.9.2 Usage example

In order to use the image pipeline you just need to enable it and define an item with the image_urls and images
fields:

from scrapy.item import Item

class MyItem(Item):

... other item fields ...
image_urls = Field()
images = Field()

If you need something more complex and want to override the custom images pipeline behaviour, see Implementing
your custom Images Pipeline.

5.9.3 Enabling your Images Pipeline

To enable your images pipeline you must first add it to your project ITEM_PIPELINES setting:

ITEM_PIPELINES = ['scrapy.contrib.pipeline.images.ImagesPipeline']

And set the IMAGES_STORE setting to a valid directory that will be used for storing the downloaded images. Other-
wise the pipeline will remain disabled, even if you include it in the ITEM_PIPELINES setting.

For example:

IMAGES_STORE = '/path/to/valid/dir'

5.9.4 Images Storage

File system is currently the only officially supported storage, but there is also (undocumented) support for Amazon
S3.

5.9. Downloading Item Images 101

https://s3.amazonaws.com/
https://s3.amazonaws.com/

Scrapy Documentation, Release 0.18.4

File system storage

The images are stored in files (one per image), using a SHA1 hash of their URLs for the file names.

For example, the following image URL:

http://www.example.com/image.jpg

Whose SHA1 hash is:

3afec3b4765f8f0a07b78f98c07b83f013567a0a

Will be downloaded and stored in the following file:

<IMAGES_STORE>/full/3afec3b4765f8f0a07b78f98c07b83f013567a0a.jpg

Where:

• <IMAGES_STORE> is the directory defined in IMAGES_STORE setting

• full is a sub-directory to separate full images from thumbnails (if used). For more info see Thumbnail gener-
ation.

5.9.5 Additional features

Image expiration

The Image Pipeline avoids downloading images that were downloaded recently. To adjust this retention delay use the
IMAGES_EXPIRES setting, which specifies the delay in number of days:

90 days of delay for image expiration
IMAGES_EXPIRES = 90

Thumbnail generation

The Images Pipeline can automatically create thumbnails of the downloaded images. In order use this feature,
you must set IMAGES_THUMBS to a dictionary where the keys are the thumbnail names and the values are their
dimensions.

For example:

IMAGES_THUMBS = {
'small': (50, 50),
'big': (270, 270),

}

When you use this feature, the Images Pipeline will create thumbnails of the each specified size with this format:

<IMAGES_STORE>/thumbs/<size_name>/<image_id>.jpg

Where:

• <size_name> is the one specified in the IMAGES_THUMBS dictionary keys (small, big, etc)

• <image_id> is the SHA1 hash of the image url

Example of image files stored using small and big thumbnail names:

102 Chapter 5. Solving specific problems

http://en.wikipedia.org/wiki/SHA_hash_functions
http://en.wikipedia.org/wiki/SHA_hash_functions

Scrapy Documentation, Release 0.18.4

<IMAGES_STORE>/full/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg
<IMAGES_STORE>/thumbs/small/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg
<IMAGES_STORE>/thumbs/big/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg

The first one is the full image, as downloaded from the site.

Filtering out small images

You can drop images which are too small, by specifying the minimum allowed size in the IMAGES_MIN_HEIGHT
and IMAGES_MIN_WIDTH settings.

For example:

IMAGES_MIN_HEIGHT = 110
IMAGES_MIN_WIDTH = 110

Note: these size constraints don’t affect thumbnail generation at all.

By default, there are no size constraints, so all images are processed.

5.9.6 Implementing your custom Images Pipeline

Here are the methods that you should override in your custom Images Pipeline:

class scrapy.contrib.pipeline.images.ImagesPipeline

get_media_requests(item, info)
As seen on the workflow, the pipeline will get the URLs of the images to download from the item. In
order to do this, you must override the get_media_requests() method and return a Request for
each image URL:

def get_media_requests(self, item, info):
for image_url in item['image_urls']:

yield Request(image_url)

Those requests will be processed by the pipeline and, when they have finished downloading, the results
will be sent to the item_completed() method, as a list of 2-element tuples. Each tuple will contain
(success, image_info_or_failure) where:

•success is a boolean which is True if the image was downloaded successfully or False if it failed
for some reason

•image_info_or_error is a dict containing the following keys (if success is True) or a Twisted
Failure if there was a problem.

–url - the url where the image was downloaded from. This is the url of the request returned from
the get_media_requests() method.

–path - the path (relative to IMAGES_STORE) where the image was stored

–checksum - a MD5 hash of the image contents

The list of tuples received by item_completed() is guaranteed to retain the same order of the requests
returned from the get_media_requests() method.

Here’s a typical value of the results argument:

5.9. Downloading Item Images 103

http://twistedmatrix.com/documents/8.2.0/api/twisted.python.failure.Failure.html
http://twistedmatrix.com/documents/8.2.0/api/twisted.python.failure.Failure.html
http://en.wikipedia.org/wiki/MD5

Scrapy Documentation, Release 0.18.4

[(True,
{'checksum': '2b00042f7481c7b056c4b410d28f33cf',
'path': 'full/7d97e98f8af710c7e7fe703abc8f639e0ee507c4.jpg',
'url': 'http://www.example.com/images/product1.jpg'}),

(True,
{'checksum': 'b9628c4ab9b595f72f280b90c4fd093d',
'path': 'full/1ca5879492b8fd606df1964ea3c1e2f4520f076f.jpg',
'url': 'http://www.example.com/images/product2.jpg'}),

(False,
Failure(...))]

By default the get_media_requests() method returns None which means there are no images to
download for the item.

item_completed(results, items, info)
The ImagesPipeline.item_completed() method called when all image requests for a single
item have completed (either finished downloading, or failed for some reason).

The item_completed() method must return the output that will be sent to subsequent item pipeline
stages, so you must return (or drop) the item, as you would in any pipeline.

Here is an example of the item_completed() method where we store the downloaded image paths
(passed in results) in the image_paths item field, and we drop the item if it doesn’t contain any images:

from scrapy.exceptions import DropItem

def item_completed(self, results, item, info):
image_paths = [x['path'] for ok, x in results if ok]
if not image_paths:

raise DropItem("Item contains no images")
item['image_paths'] = image_paths
return item

By default, the item_completed() method returns the item.

5.9.7 Custom Images pipeline example

Here is a full example of the Images Pipeline whose methods are examplified above:

from scrapy.contrib.pipeline.images import ImagesPipeline
from scrapy.exceptions import DropItem
from scrapy.http import Request

class MyImagesPipeline(ImagesPipeline):

def get_media_requests(self, item, info):
for image_url in item['image_urls']:

yield Request(image_url)

def item_completed(self, results, item, info):
image_paths = [x['path'] for ok, x in results if ok]
if not image_paths:

raise DropItem("Item contains no images")
item['image_paths'] = image_paths
return item

104 Chapter 5. Solving specific problems

Scrapy Documentation, Release 0.18.4

5.10 Ubuntu packages

New in version 0.10.

Scrapinghub publishes apt-gettable packages which are generally fresher than those in Ubuntu, and more stable too
since they’re continuously built from Github repo (master & stable branches) and so they contain the latest bug fixes.

To use the packages, just add the following line to your /etc/apt/sources.list, and then run aptitude
update and aptitude install scrapy-0.13:

deb http://archive.scrapy.org/ubuntu DISTRO main

Replacing DISTRO with the name of your Ubuntu release, which you can get with command:

lsb_release -cs

Supported Ubuntu releases are: karmic, lucid, maverick, natty, oneiric, precise, quantal, raring.

For Ubuntu Raring (13.04):

deb http://archive.scrapy.org/ubuntu raring main

For Ubuntu Quantal (12.10):

deb http://archive.scrapy.org/ubuntu quantal main

For Ubuntu Precise (12.04):

deb http://archive.scrapy.org/ubuntu precise main

For Ubuntu Oneiric (11.10):

deb http://archive.scrapy.org/ubuntu oneiric main

For Ubuntu Natty (11.04):

deb http://archive.scrapy.org/ubuntu natty main

For Ubuntu Maverick (10.10):

deb http://archive.scrapy.org/ubuntu maverick main

For Ubuntu Lucid (10.04):

deb http://archive.scrapy.org/ubuntu lucid main

For Ubuntu Karmic (9.10):

deb http://archive.scrapy.org/ubuntu karmic main

Warning: Please note that these packages are updated frequently, and so if you find you can’t download the
packages, try updating your apt package lists first, e.g., with apt-get update or aptitude update.

The public GPG key used to sign these packages can be imported into you APT keyring as follows:

curl -s http://archive.scrapy.org/ubuntu/archive.key | sudo apt-key add -

5.10. Ubuntu packages 105

http://scrapinghub.com/
https://github.com/scrapy/scrapy

Scrapy Documentation, Release 0.18.4

5.11 Scrapyd

Scrapyd has been moved into a separate project.

Its documentation is now hosted at:

http://scrapyd.readthedocs.org/

5.12 AutoThrottle extension

This is an extension for automatically throttling crawling speed based on load of both the Scrapy server and the website
you are crawling.

5.12.1 Design goals

1. be nicer to sites instead of using default download delay of zero

2. automatically adjust scrapy to the optimum crawling speed, so the user doesn’t have to tune the download
delays and concurrent requests to find the optimum one. the user only needs to specify the maximum concurrent
requests it allows, and the extension does the rest.

5.12.2 How it works

In Scrapy, the download latency is measured as the time elapsed between establishing the TCP connection and receiv-
ing the HTTP headers.

Note that these latencies are very hard to measure accurately in a cooperative multitasking environment because Scrapy
may be busy processing a spider callback, for example, and unable to attend downloads. However, these latencies
should still give a reasonable estimate of how busy Scrapy (and ultimately, the server) is, and this extension builds on
that premise.

5.12.3 Throttling algorithm

This adjusts download delays and concurrency based on the following rules:

1. spiders always start with one concurrent request and a download delay of AUTOTHROTTLE_START_DELAY

2. when a response is received, the download delay is adjusted to the average of previous download delay and the
latency of the response.

Note: The AutoThrottle extension honours the standard Scrapy settings for concurrency and delay. This
means that it will never set a download delay lower than DOWNLOAD_DELAY or a concurrency higher than
CONCURRENT_REQUESTS_PER_DOMAIN (or CONCURRENT_REQUESTS_PER_IP, depending on which one
you use).

5.12.4 Settings

The settings used to control the AutoThrottle extension are:

• AUTOTHROTTLE_ENABLED

106 Chapter 5. Solving specific problems

http://scrapyd.readthedocs.org/

Scrapy Documentation, Release 0.18.4

• AUTOTHROTTLE_START_DELAY

• AUTOTHROTTLE_MAX_DELAY

• AUTOTHROTTLE_DEBUG

• CONCURRENT_REQUESTS_PER_DOMAIN

• CONCURRENT_REQUESTS_PER_IP

• DOWNLOAD_DELAY

For more information see Throttling algorithm.

AUTOTHROTTLE_ENABLED

Default: False

Enables the AutoThrottle extension.

AUTOTHROTTLE_START_DELAY

Default: 5.0

The initial download delay (in seconds).

AUTOTHROTTLE_MAX_DELAY

Default: 60.0

The maximum download delay (in seconds) to be set in case of high latencies.

AUTOTHROTTLE_DEBUG

Default: False

Enable AutoThrottle debug mode which will display stats on every response received, so you can see how the throttling
parameters are being adjusted in real time.

5.13 Benchmarking

New in version 0.17.

Scrapy comes with a simple benchmarking suite that spawns a local HTTP server and crawls it at the maximum
possible speed. The goal of this benchmarking is to get an idea of how Scrapy performs in your hardware, in order to
have a common baseline for comparisons. It uses a simple spider that does nothing and just follows links.

To run it use:

scrapy bench

You should see an output like this:

5.13. Benchmarking 107

Scrapy Documentation, Release 0.18.4

2013-05-16 13:08:46-0300 [scrapy] INFO: Scrapy 0.17.0 started (bot: scrapybot)
2013-05-16 13:08:47-0300 [follow] INFO: Spider opened
2013-05-16 13:08:47-0300 [follow] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:48-0300 [follow] INFO: Crawled 74 pages (at 4440 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:49-0300 [follow] INFO: Crawled 143 pages (at 4140 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:50-0300 [follow] INFO: Crawled 210 pages (at 4020 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:51-0300 [follow] INFO: Crawled 274 pages (at 3840 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:52-0300 [follow] INFO: Crawled 343 pages (at 4140 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:53-0300 [follow] INFO: Crawled 410 pages (at 4020 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:54-0300 [follow] INFO: Crawled 474 pages (at 3840 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:55-0300 [follow] INFO: Crawled 538 pages (at 3840 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:56-0300 [follow] INFO: Crawled 602 pages (at 3840 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:57-0300 [follow] INFO: Closing spider (closespider_timeout)
2013-05-16 13:08:57-0300 [follow] INFO: Crawled 666 pages (at 3840 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:57-0300 [follow] INFO: Dumping Scrapy stats:

{'downloader/request_bytes': 231508,
'downloader/request_count': 682,
'downloader/request_method_count/GET': 682,
'downloader/response_bytes': 1172802,
'downloader/response_count': 682,
'downloader/response_status_count/200': 682,
'finish_reason': 'closespider_timeout',
'finish_time': datetime.datetime(2013, 5, 16, 16, 8, 57, 985539),
'log_count/INFO': 14,
'request_depth_max': 34,
'response_received_count': 682,
'scheduler/dequeued': 682,
'scheduler/dequeued/memory': 682,
'scheduler/enqueued': 12767,
'scheduler/enqueued/memory': 12767,
'start_time': datetime.datetime(2013, 5, 16, 16, 8, 47, 676539)}

2013-05-16 13:08:57-0300 [follow] INFO: Spider closed (closespider_timeout)

That tells you that Scrapy is able to crawl about 3900 pages per minute in the hardware where you run it. Note that
this is a very simple spider intended to follow links, any custom spider you write will probably do more stuff which
results in slower crawl rates. How slower depends on how much your spider does and how well it’s written.

In the future, more cases will be added to the benchmarking suite to cover other common scenarios.

5.14 Jobs: pausing and resuming crawls

Sometimes, for big sites, it’s desirable to pause crawls and be able to resume them later.

Scrapy supports this functionality out of the box by providing the following facilities:

• a scheduler that persists scheduled requests on disk

• a duplicates filter that persists visited requests on disk

• an extension that keeps some spider state (key/value pairs) persistent between batches

5.14.1 Job directory

To enable persistence support you just need to define a job directory through the JOBDIR setting. This directory
will be for storing all required data to keep the state of a single job (ie. a spider run). It’s important to note that this

108 Chapter 5. Solving specific problems

Scrapy Documentation, Release 0.18.4

directory must not be shared by different spiders, or even different jobs/runs of the same spider, as it’s meant to be
used for storing the state of a single job.

5.14.2 How to use it

To start a spider with persistence supported enabled, run it like this:

scrapy crawl somespider -s JOBDIR=crawls/somespider-1

Then, you can stop the spider safely at any time (by pressing Ctrl-C or sending a signal), and resume it later by issuing
the same command:

scrapy crawl somespider -s JOBDIR=crawls/somespider-1

5.14.3 Keeping persistent state between batches

Sometimes you’ll want to keep some persistent spider state between pause/resume batches. You can use the
spider.state attribute for that, which should be a dict. There’s a built-in extension that takes care of serializ-
ing, storing and loading that attribute from the job directory, when the spider starts and stops.

Here’s an example of a callback that uses the spider state (other spider code is omitted for brevity):

def parse_item(self, response):
parse item here
self.state['items_count'] = self.state.get('items_count', 0) + 1

5.14.4 Persistence gotchas

There are a few things to keep in mind if you want to be able to use the Scrapy persistence support:

Cookies expiration

Cookies may expire. So, if you don’t resume your spider quickly the requests scheduled may no longer work. This
won’t be an issue if you spider doesn’t rely on cookies.

Request serialization

Requests must be serializable by the pickle module, in order for persistence to work, so you should make sure that
your requests are serializable.

The most common issue here is to use lambda functions on request callbacks that can’t be persisted.

So, for example, this won’t work:

def some_callback(self, response):
somearg = 'test'
return Request('http://www.example.com', callback=lambda r: self.other_callback(r, somearg))

def other_callback(self, response, somearg):
print "the argument passed is:", somearg

But this will:

5.14. Jobs: pausing and resuming crawls 109

Scrapy Documentation, Release 0.18.4

def some_callback(self, response):
somearg = 'test'
return Request('http://www.example.com', meta={'somearg': somearg})

def other_callback(self, response):
somearg = response.meta['somearg']
print "the argument passed is:", somearg

5.15 DjangoItem

DjangoItem is a class of item that gets its fields definition from a Django model, you simply create a DjangoItem
and specify what Django model it relates to.

Besides of getting the model fields defined on your item, DjangoItem provides a method to create and populate a
Django model instance with the item data.

5.15.1 Using DjangoItem

DjangoItem works much like ModelForms in Django, you create a subclass and define its django_model at-
tribute to be a valid Django model. With this you will get an item with a field for each Django model field.

In addition, you can define fields that aren’t present in the model and even override fields that are present in the model
defining them in the item.

Let’s see some examples:

Creating a Django model for the examples:

from django.db import models
class Person(models.Model):

name = models.CharField(max_length=255)
age = models.IntegerField()

Defining a basic DjangoItem:

from scrapy.contrib.djangoitem import DjangoItem
class PersonItem(DjangoItem):

django_model = Person

DjangoItem work just like Item:

p = PersonItem()
p['name'] = 'John'
p['age'] = '22'

To obtain the Django model from the item, we call the extra method save() of the DjangoItem:

>>> person = p.save()
>>> person.name
'John'
>>> person.age
'22'
>>> person.id
1

The model is already saved when we call save(), we can prevent this by calling it with commit=False. We can
use commit=False in save() method to obtain an unsaved model:

110 Chapter 5. Solving specific problems

Scrapy Documentation, Release 0.18.4

>>> person = p.save(commit=False)
>>> person.name
'John'
>>> person.age
'22'
>>> person.id
None

As said before, we can add other fields to the item:

class PersonItem(DjangoItem):
django_model = Person
sex = Field()

p = PersonItem()
p['name'] = 'John'
p['age'] = '22'
p['sex'] = 'M'

Note: fields added to the item won’t be taken into account when doing a save()

And we can override the fields of the model with your own:

class PersonItem(DjangoItem):
django_model = Person
name = Field(default='No Name')

This is useful to provide properties to the field, like a default or any other property that your project uses.

5.15.2 DjangoItem caveats

DjangoItem is a rather convenient way to integrate Scrapy projects with Django models, but bear in mind that Django
ORM may not scale well if you scrape a lot of items (ie. millions) with Scrapy. This is because a relational backend
is often not a good choice for a write intensive application (such as a web crawler), specially if the database is highly
normalized and with many indices.

Frequently Asked Questions Get answers to most frequently asked questions.

Debugging Spiders Learn how to debug common problems of your scrapy spider.

Spiders Contracts Learn how to use contracts for testing your spiders.

Common Practices Get familiar with some Scrapy common practices.

Broad Crawls Tune Scrapy for crawling a lot domains in parallel.

Using Firefox for scraping Learn how to scrape with Firefox and some useful add-ons.

Using Firebug for scraping Learn how to scrape efficiently using Firebug.

Debugging memory leaks Learn how to find and get rid of memory leaks in your crawler.

Downloading Item Images Download static images associated with your scraped items.

Ubuntu packages Install latest Scrapy packages easily on Ubuntu

Scrapyd Deploying your Scrapy project in production.

AutoThrottle extension Adjust crawl rate dynamically based on load.

5.15. DjangoItem 111

Scrapy Documentation, Release 0.18.4

Benchmarking Check how Scrapy performs on your hardware.

Jobs: pausing and resuming crawls Learn how to pause and resume crawls for large spiders.

DjangoItem Write scraped items using Django models.

112 Chapter 5. Solving specific problems

CHAPTER 6

Extending Scrapy

6.1 Architecture overview

This document describes the architecture of Scrapy and how its components interact.

6.1.1 Overview

The following diagram shows an overview of the Scrapy architecture with its components and an outline of the data
flow that takes place inside the system (shown by the green arrows). A brief description of the components is included
below with links for more detailed information about them. The data flow is also described below.

113

Scrapy Documentation, Release 0.18.4

6.1.2 Components

Scrapy Engine

The engine is responsible for controlling the data flow between all components of the system, and triggering events
when certain actions occur. See the Data Flow section below for more details.

Scheduler

The Scheduler receives requests from the engine and enqueues them for feeding them later (also to the engine) when
the engine requests them.

Downloader

The Downloader is responsible for fetching web pages and feeding them to the engine which, in turn, feeds them to
the spiders.

Spiders

Spiders are custom classes written by Scrapy users to parse responses and extract items (aka scraped items) from them
or additional URLs (requests) to follow. Each spider is able to handle a specific domain (or group of domains). For
more information see Spiders.

Item Pipeline

The Item Pipeline is responsible for processing the items once they have been extracted (or scraped) by the spiders.
Typical tasks include cleansing, validation and persistence (like storing the item in a database). For more information
see Item Pipeline.

Downloader middlewares

Downloader middlewares are specific hooks that sit between the Engine and the Downloader and process requests
when they pass from the Engine to the Downloader, and responses that pass from Downloader to the Engine. They
provide a convenient mechanism for extending Scrapy functionality by plugging custom code. For more information
see Downloader Middleware.

Spider middlewares

Spider middlewares are specific hooks that sit between the Engine and the Spiders and are able to process spider input
(responses) and output (items and requests). They provide a convenient mechanism for extending Scrapy functionality
by plugging custom code. For more information see Spider Middleware.

6.1.3 Data flow

The data flow in Scrapy is controlled by the execution engine, and goes like this:

1. The Engine opens a domain, locates the Spider that handles that domain, and asks the spider for the first URLs
to crawl.

2. The Engine gets the first URLs to crawl from the Spider and schedules them in the Scheduler, as Requests.

114 Chapter 6. Extending Scrapy

Scrapy Documentation, Release 0.18.4

3. The Engine asks the Scheduler for the next URLs to crawl.

4. The Scheduler returns the next URLs to crawl to the Engine and the Engine sends them to the Downloader,
passing through the Downloader Middleware (request direction).

5. Once the page finishes downloading the Downloader generates a Response (with that page) and sends it to the
Engine, passing through the Downloader Middleware (response direction).

6. The Engine receives the Response from the Downloader and sends it to the Spider for processing, passing
through the Spider Middleware (input direction).

7. The Spider processes the Response and returns scraped Items and new Requests (to follow) to the Engine.

8. The Engine sends scraped Items (returned by the Spider) to the Item Pipeline and Requests (returned by spider)
to the Scheduler

9. The process repeats (from step 2) until there are no more requests from the Scheduler, and the Engine closes the
domain.

6.1.4 Event-driven networking

Scrapy is written with Twisted, a popular event-driven networking framework for Python. Thus, it’s implemented
using a non-blocking (aka asynchronous) code for concurrency.

For more information about asynchronous programming and Twisted see these links:

• Asynchronous Programming with Twisted

• Twisted - hello, asynchronous programming

6.2 Downloader Middleware

The downloader middleware is a framework of hooks into Scrapy’s request/response processing. It’s a light, low-level
system for globally altering Scrapy’s requests and responses.

6.2.1 Activating a downloader middleware

To activate a downloader middleware component, add it to the DOWNLOADER_MIDDLEWARES setting, which is a
dict whose keys are the middleware class paths and their values are the middleware orders.

Here’s an example:

DOWNLOADER_MIDDLEWARES = {
'myproject.middlewares.CustomDownloaderMiddleware': 543,

}

The DOWNLOADER_MIDDLEWARES setting is merged with the DOWNLOADER_MIDDLEWARES_BASE setting de-
fined in Scrapy (and not meant to be overridden) and then sorted by order to get the final sorted list of enabled
middlewares: the first middleware is the one closer to the engine and the last is the one closer to the downloader.

To decide which order to assign to your middleware see the DOWNLOADER_MIDDLEWARES_BASE setting and pick a
value according to where you want to insert the middleware. The order does matter because each middleware performs
a different action and your middleware could depend on some previous (or subsequent) middleware being applied.

If you want to disable a built-in middleware (the ones defined in DOWNLOADER_MIDDLEWARES_BASE and enabled
by default) you must define it in your project’s DOWNLOADER_MIDDLEWARES setting and assign None as its value.
For example, if you want to disable the off-site middleware:

6.2. Downloader Middleware 115

http://twistedmatrix.com/trac/
http://twistedmatrix.com/projects/core/documentation/howto/async.html
http://jessenoller.com/2009/02/11/twisted-hello-asynchronous-programming/

Scrapy Documentation, Release 0.18.4

DOWNLOADER_MIDDLEWARES = {
'myproject.middlewares.CustomDownloaderMiddleware': 543,
'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': None,

}

Finally, keep in mind that some middlewares may need to be enabled through a particular setting. See each middleware
documentation for more info.

6.2.2 Writing your own downloader middleware

Writing your own downloader middleware is easy. Each middleware component is a single Python class that defines
one or more of the following methods:

class scrapy.contrib.downloadermiddleware.DownloaderMiddleware

process_request(request, spider)
This method is called for each request that goes through the download middleware.

process_request() should return either None, a Response object, or a Request object.

If it returns None, Scrapy will continue processing this request, executing all other middlewares until,
finally, the appropriate downloader handler is called the request performed (and its response downloaded).

If it returns a Response object, Scrapy won’t bother calling ANY other request or exception middleware,
or the appropriate download function; it’ll return that Response. Response middleware is always called on
every Response.

If it raises an IgnoreRequest exception, the entire request will be dropped completely and its callback
never called.

Parameters

• request (Request object) – the request being processed

• spider (BaseSpider object) – the spider for which this request is intended

process_response(request, response, spider)
process_response() should return either a Response object, a Request object or raise a
IgnoreRequest exception.

If it returns a Response (it could be the same given response, or a brand-new one), that response will
continue to be processed with the process_response() of the next middleware in the pipeline.

If it returns a Request object, the returned request will be rescheduled to be downloaded in the future.

If it raises an IgnoreRequest exception, the response will be dropped completely and its callback never
called.

Parameters

• request (is a Request object) – the request that originated the response

• response (Response object) – the response being processed

• spider (BaseSpider object) – the spider for which this response is intended

process_exception(request, exception, spider)
Scrapy calls process_exception() when a download handler or a process_request() (from a
downloader middleware) raises an exception.

process_exception() should return either None, Response or Request object.

116 Chapter 6. Extending Scrapy

Scrapy Documentation, Release 0.18.4

If it returns None, Scrapy will continue processing this exception, executing any other exception middle-
ware, until no middleware is left and the default exception handling kicks in.

If it returns a Response object, the response middleware kicks in, and won’t bother calling any other
exception middleware.

If it returns a Request object, the returned request is used to instruct an immediate redirec-
tion. The original request won’t finish until the redirected request is completed. This stops the
process_exception() middleware the same as returning Response would do.

Parameters

• request (is a Request object) – the request that generated the exception

• exception (an Exception object) – the raised exception

• spider (BaseSpider object) – the spider for which this request is intended

6.2.3 Built-in downloader middleware reference

This page describes all downloader middleware components that come with Scrapy. For information on how to use
them and how to write your own downloader middleware, see the downloader middleware usage guide.

For a list of the components enabled by default (and their orders) see the DOWNLOADER_MIDDLEWARES_BASE
setting.

CookiesMiddleware

class scrapy.contrib.downloadermiddleware.cookies.CookiesMiddleware
This middleware enables working with sites that require cookies, such as those that use sessions. It keeps track
of cookies sent by web servers, and send them back on subsequent requests (from that spider), just like web
browsers do.

The following settings can be used to configure the cookie middleware:

• COOKIES_ENABLED

• COOKIES_DEBUG

Multiple cookie sessions per spider

New in version 0.15.

There is support for keeping multiple cookie sessions per spider by using the cookiejar Request meta key. By
default it uses a single cookie jar (session), but you can pass an identifier to use different ones.

For example:

for i, url in enumerate(urls):
yield Request("http://www.example.com", meta={'cookiejar': i},

callback=self.parse_page)

Keep in mind that the cookiejar meta key is not “sticky”. You need to keep passing it along on subsequent requests.
For example:

def parse_page(self, response):
do some processing
return Request("http://www.example.com/otherpage",

6.2. Downloader Middleware 117

Scrapy Documentation, Release 0.18.4

meta={'cookiejar': response.meta['cookiejar']},
callback=self.parse_other_page)

COOKIES_ENABLED

Default: True

Whether to enable the cookies middleware. If disabled, no cookies will be sent to web servers.

COOKIES_DEBUG

Default: False

If enabled, Scrapy will log all cookies sent in requests (ie. Cookie header) and all cookies received in responses (ie.
Set-Cookie header).

Here’s an example of a log with COOKIES_DEBUG enabled:

2011-04-06 14:35:10-0300 [diningcity] INFO: Spider opened
2011-04-06 14:35:10-0300 [diningcity] DEBUG: Sending cookies to: <GET http://www.diningcity.com/netherlands/index.html>

Cookie: clientlanguage_nl=en_EN
2011-04-06 14:35:14-0300 [diningcity] DEBUG: Received cookies from: <200 http://www.diningcity.com/netherlands/index.html>

Set-Cookie: JSESSIONID=B~FA4DC0C496C8762AE4F1A620EAB34F38; Path=/
Set-Cookie: ip_isocode=US
Set-Cookie: clientlanguage_nl=en_EN; Expires=Thu, 07-Apr-2011 21:21:34 GMT; Path=/

2011-04-06 14:49:50-0300 [diningcity] DEBUG: Crawled (200) <GET http://www.diningcity.com/netherlands/index.html> (referer: None)
[...]

DefaultHeadersMiddleware

class scrapy.contrib.downloadermiddleware.defaultheaders.DefaultHeadersMiddleware
This middleware sets all default requests headers specified in the DEFAULT_REQUEST_HEADERS setting.

DownloadTimeoutMiddleware

class scrapy.contrib.downloadermiddleware.downloadtimeout.DownloadTimeoutMiddleware
This middleware sets the download timeout for requests specified in the DOWNLOAD_TIMEOUT setting.

HttpAuthMiddleware

class scrapy.contrib.downloadermiddleware.httpauth.HttpAuthMiddleware
This middleware authenticates all requests generated from certain spiders using Basic access authentication
(aka. HTTP auth).

To enable HTTP authentication from certain spiders, set the http_user and http_pass attributes of those
spiders.

Example:

class SomeIntranetSiteSpider(CrawlSpider):

http_user = 'someuser'
http_pass = 'somepass'

118 Chapter 6. Extending Scrapy

http://en.wikipedia.org/wiki/Basic_access_authentication

Scrapy Documentation, Release 0.18.4

name = 'intranet.example.com'

.. rest of the spider code omitted ...

HttpCacheMiddleware

class scrapy.contrib.downloadermiddleware.httpcache.HttpCacheMiddleware
This middleware provides low-level cache to all HTTP requests and responses. It has to be combined with a
cache storage backend as well as a cache policy.

Scrapy ships with two HTTP cache storage backends:

•DBM storage backend (default)

•Filesystem storage backend

You can change the HTTP cache storage backend with the HTTPCACHE_STORAGE setting. Or you can also
implement your own storage backend.

Scrapy ships with two HTTP cache policies:

•RFC2616 policy

•Dummy policy (default)

You can change the HTTP cache policy with the HTTPCACHE_POLICY setting. Or you can also implement
your own policy.

Dummy policy (default)

This policy has no awareness of any HTTP Cache-Control directives. Every request and its corresponding response are
cached. When the same request is seen again, the response is returned without transferring anything from the Internet.

The Dummy policy is useful for testing spiders faster (without having to wait for downloads every time) and for trying
your spider offline, when an Internet connection is not available. The goal is to be able to “replay” a spider run exactly
as it ran before.

In order to use this policy, set:

• HTTPCACHE_POLICY to scrapy.contrib.httpcache.DummyPolicy

RFC2616 policy

This policy provides a RFC2616 compliant HTTP cache, i.e. with HTTP Cache-Control awareness, aimed at produc-
tion and used in continuous runs to avoid downloading unmodified data (to save bandwidth and speed up crawls).

what is implemented:

• Do not attempt to store responses/requests with no-store cache-control directive set

• Do not serve responses from cache if no-cache cache-control directive is set even for fresh responses

• Compute freshness lifetime from max-age cache-control directive

• Compute freshness lifetime from Expires response header

• Compute freshness lifetime from Last-Modified response header (heuristic used by Firefox)

• Compute current age from Age response header

6.2. Downloader Middleware 119

Scrapy Documentation, Release 0.18.4

• Compute current age from Date header

• Revalidate stale responses based on Last-Modified response header

• Revalidate stale responses based on ETag response header

• Set Date header for any received response missing it

what is missing:

• Pragma: no-cache support http://www.mnot.net/cache_docs/#PRAGMA

• Vary header support http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.6

• Invalidation after updates or deletes http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.10

• ... probably others ..

In order to use this policy, set:

• HTTPCACHE_POLICY to scrapy.contrib.httpcache.RFC2616Policy

DBM storage backend (default)

New in version 0.13.

A DBM storage backend is available for the HTTP cache middleware.

By default, it uses the anydbm module, but you can change it with the HTTPCACHE_DBM_MODULE setting.

In order to use this storage backend, set:

• HTTPCACHE_STORAGE to scrapy.contrib.httpcache.DbmCacheStorage

Filesystem storage backend

A file system storage backend is also available for the HTTP cache middleware.

In order to use this storage backend, set:

• HTTPCACHE_STORAGE to scrapy.contrib.httpcache.FilesystemCacheStorage

Each request/response pair is stored in a different directory containing the following files:

• request_body - the plain request body

• request_headers - the request headers (in raw HTTP format)

• response_body - the plain response body

• response_headers - the request headers (in raw HTTP format)

• meta - some metadata of this cache resource in Python repr() format (grep-friendly format)

• pickled_meta - the same metadata in meta but pickled for more efficient deserialization

The directory name is made from the request fingerprint (see scrapy.utils.request.fingerprint), and
one level of subdirectories is used to avoid creating too many files into the same directory (which is inefficient in many
file systems). An example directory could be:

/path/to/cache/dir/example.com/72/72811f648e718090f041317756c03adb0ada46c7

120 Chapter 6. Extending Scrapy

http://www.mnot.net/cache_docs/#PRAGMA
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.10
http://en.wikipedia.org/wiki/Dbm
http://docs.python.org/library/anydbm.html

Scrapy Documentation, Release 0.18.4

HTTPCache middleware settings

The HttpCacheMiddleware can be configured through the following settings:

HTTPCACHE_ENABLED New in version 0.11.

Default: False

Whether the HTTP cache will be enabled.

Changed in version 0.11: Before 0.11, HTTPCACHE_DIR was used to enable cache.

HTTPCACHE_EXPIRATION_SECS Default: 0

Expiration time for cached requests, in seconds.

Cached requests older than this time will be re-downloaded. If zero, cached requests will never expire.

Changed in version 0.11: Before 0.11, zero meant cached requests always expire.

HTTPCACHE_DIR Default: ’httpcache’

The directory to use for storing the (low-level) HTTP cache. If empty, the HTTP cache will be disabled. If a relative
path is given, is taken relative to the project data dir. For more info see: Default structure of Scrapy projects.

HTTPCACHE_IGNORE_HTTP_CODES New in version 0.10.

Default: []

Don’t cache response with these HTTP codes.

HTTPCACHE_IGNORE_MISSING Default: False

If enabled, requests not found in the cache will be ignored instead of downloaded.

HTTPCACHE_IGNORE_SCHEMES New in version 0.10.

Default: [’file’]

Don’t cache responses with these URI schemes.

HTTPCACHE_STORAGE Default: ’scrapy.contrib.httpcache.DbmCacheStorage’

The class which implements the cache storage backend.

HTTPCACHE_DBM_MODULE New in version 0.13.

Default: ’anydbm’

The database module to use in the DBM storage backend. This setting is specific to the DBM backend.

HTTPCACHE_POLICY New in version 0.18.

Default: ’scrapy.contrib.httpcache.DummyPolicy’

The class which implements the cache policy.

6.2. Downloader Middleware 121

Scrapy Documentation, Release 0.18.4

HttpCompressionMiddleware

class scrapy.contrib.downloadermiddleware.httpcompression.HttpCompressionMiddleware
This middleware allows compressed (gzip, deflate) traffic to be sent/received from web sites.

HttpCompressionMiddleware Settings

COMPRESSION_ENABLED Default: True

Whether the Compression middleware will be enabled.

ChunkedTransferMiddleware

class scrapy.contrib.downloadermiddleware.chunked.ChunkedTransferMiddleware
This middleware adds support for chunked transfer encoding

HttpProxyMiddleware

New in version 0.8.

class scrapy.contrib.downloadermiddleware.httpproxy.HttpProxyMiddleware
This middleware sets the HTTP proxy to use for requests, by setting the proxymeta value to Request objects.

Like the Python standard library modules urllib and urllib2, it obeys the following environment variables:

•http_proxy

•https_proxy

•no_proxy

RedirectMiddleware

class scrapy.contrib.downloadermiddleware.redirect.RedirectMiddleware
This middleware handles redirection of requests based on response status.

The urls which the request goes through (while being redirected) can be found in the redirect_urls
Request.meta key.

The RedirectMiddleware can be configured through the following settings (see the settings documentation for
more info):

• REDIRECT_ENABLED

• REDIRECT_MAX_TIMES

If Request.meta contains the dont_redirect key, the request will be ignored by this middleware.

RedirectMiddleware settings

REDIRECT_ENABLED New in version 0.13.

Default: True

Whether the Redirect middleware will be enabled.

122 Chapter 6. Extending Scrapy

http://en.wikipedia.org/wiki/Chunked_transfer_encoding
http://docs.python.org/library/urllib.html
http://docs.python.org/library/urllib2.html

Scrapy Documentation, Release 0.18.4

REDIRECT_MAX_TIMES Default: 20

The maximum number of redirections that will be follow for a single request.

MetaRefreshMiddleware

class scrapy.contrib.downloadermiddleware.redirect.MetaRefreshMiddleware
This middleware handles redirection of requests based on meta-refresh html tag.

The MetaRefreshMiddleware can be configured through the following settings (see the settings documentation
for more info):

• METAREFRESH_ENABLED

• METAREFRESH_MAXDELAY

This middleware obey REDIRECT_MAX_TIMES setting, dont_redirect and redirect_urls request meta
keys as described for RedirectMiddleware

MetaRefreshMiddleware settings

METAREFRESH_ENABLED New in version 0.17.

Default: True

Whether the Meta Refresh middleware will be enabled.

REDIRECT_MAX_METAREFRESH_DELAY Default: 100

The maximum meta-refresh delay (in seconds) to follow the redirection.

RetryMiddleware

class scrapy.contrib.downloadermiddleware.retry.RetryMiddleware
A middlware to retry failed requests that are potentially caused by temporary problems such as a connection
timeout or HTTP 500 error.

Failed pages are collected on the scraping process and rescheduled at the end, once the spider has finished crawl-
ing all regular (non failed) pages. Once there are no more failed pages to retry, this middleware sends a signal
(retry_complete), so other extensions could connect to that signal.

The RetryMiddleware can be configured through the following settings (see the settings documentation for more
info):

• RETRY_ENABLED

• RETRY_TIMES

• RETRY_HTTP_CODES

About HTTP errors to consider:

You may want to remove 400 from RETRY_HTTP_CODES, if you stick to the HTTP protocol. It’s included by
default because it’s a common code used to indicate server overload, which would be something we want to retry. If
Request.meta contains the dont_retry key, the request will be ignored by this middleware.

6.2. Downloader Middleware 123

Scrapy Documentation, Release 0.18.4

RetryMiddleware Settings

RETRY_ENABLED New in version 0.13.

Default: True

Whether the Retry middleware will be enabled.

RETRY_TIMES Default: 2

Maximum number of times to retry, in addition to the first download.

RETRY_HTTP_CODES Default: [500, 502, 503, 504, 400, 408]

Which HTTP response codes to retry. Other errors (DNS lookup issues, connections lost, etc) are always retried.

RobotsTxtMiddleware

class scrapy.contrib.downloadermiddleware.robotstxt.RobotsTxtMiddleware
This middleware filters out requests forbidden by the robots.txt exclusion standard.

To make sure Scrapy respects robots.txt make sure the middleware is enabled and the ROBOTSTXT_OBEY
setting is enabled.

Warning: Keep in mind that, if you crawl using multiple concurrent requests per domain, Scrapy could still
download some forbidden pages if they were requested before the robots.txt file was downloaded. This is a
known limitation of the current robots.txt middleware and will be fixed in the future.

DownloaderStats

class scrapy.contrib.downloadermiddleware.stats.DownloaderStats
Middleware that stores stats of all requests, responses and exceptions that pass through it.

To use this middleware you must enable the DOWNLOADER_STATS setting.

UserAgentMiddleware

class scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware
Middleware that allows spiders to override the default user agent.

In order for a spider to override the default user agent, its user_agent attribute must be set.

6.3 Spider Middleware

The spider middleware is a framework of hooks into Scrapy’s spider processing mechanism where you can plug custom
functionality to process the requests that are sent to Spiders for processing and to process the responses and items that
are generated from spiders.

124 Chapter 6. Extending Scrapy

Scrapy Documentation, Release 0.18.4

6.3.1 Activating a spider middleware

To activate a spider middleware component, add it to the SPIDER_MIDDLEWARES setting, which is a dict whose
keys are the middleware class path and their values are the middleware orders.

Here’s an example:

SPIDER_MIDDLEWARES = {
'myproject.middlewares.CustomSpiderMiddleware': 543,

}

The SPIDER_MIDDLEWARES setting is merged with the SPIDER_MIDDLEWARES_BASE setting defined in Scrapy
(and not meant to be overridden) and then sorted by order to get the final sorted list of enabled middlewares: the first
middleware is the one closer to the engine and the last is the one closer to the spider.

To decide which order to assign to your middleware see the SPIDER_MIDDLEWARES_BASE setting and pick a value
according to where you want to insert the middleware. The order does matter because each middleware performs a
different action and your middleware could depend on some previous (or subsequent) middleware being applied.

If you want to disable a builtin middleware (the ones defined in SPIDER_MIDDLEWARES_BASE, and enabled by de-
fault) you must define it in your project SPIDER_MIDDLEWARES setting and assign None as its value. For example,
if you want to disable the off-site middleware:

SPIDER_MIDDLEWARES = {
'myproject.middlewares.CustomSpiderMiddleware': 543,
'scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware': None,

}

Finally, keep in mind that some middlewares may need to be enabled through a particular setting. See each middleware
documentation for more info.

6.3.2 Writing your own spider middleware

Writing your own spider middleware is easy. Each middleware component is a single Python class that defines one or
more of the following methods:

class scrapy.contrib.spidermiddleware.SpiderMiddleware

process_spider_input(response, spider)
This method is called for each response that goes through the spider middleware and into the spider, for
processing.

process_spider_input() should return None or raise an exception.

If it returns None, Scrapy will continue processing this response, executing all other middlewares until,
finally, the response is handed to the spider for processing.

If it raises an exception, Scrapy won’t bother calling any other spider middleware
process_spider_input() and will call the request errback. The output of the errback
is chained back in the other direction for process_spider_output() to process it, or
process_spider_exception() if it raised an exception.

Parameters

• response (Response object) – the response being processed

• spider (BaseSpider object) – the spider for which this response is intended

6.3. Spider Middleware 125

Scrapy Documentation, Release 0.18.4

process_spider_output(response, result, spider)
This method is called with the results returned from the Spider, after it has processed the response.

process_spider_output() must return an iterable of Request or Item objects.

Parameters

• response (class:~scrapy.http.Response object) – the response which generated this out-
put from the spider

• result (an iterable of Request or Item objects) – the result returned by the spider

• spider (BaseSpider object) – the spider whose result is being processed

process_spider_exception(response, exception, spider)
This method is called when when a spider or process_spider_input() method (from other spider
middleware) raises an exception.

process_spider_exception() should return either None or an iterable of Response or Item
objects.

If it returns None, Scrapy will continue processing this exception, executing any other
process_spider_exception() in the following middleware components, until no middleware
components are left and the exception reaches the engine (where it’s logged and discarded).

If it returns an iterable the process_spider_output() pipeline kicks in, and no other
process_spider_exception() will be called.

Parameters

• response (Response object) – the response being processed when the exception was
raised

• exception (Exception object) – the exception raised

• spider (scrapy.spider.BaseSpider object) – the spider which raised the ex-
ception

process_start_requests(start_requests, spider)
New in version 0.15.

This method is called with the start requests of the spider, and works similarly to the
process_spider_output() method, except that it doesn’t have a response associated and must
return only requests (not items).

It receives an iterable (in the start_requests parameter) and must return another iterable of
Request objects.

Note: When implementing this method in your spider middleware, you should always return an iterable
(that follows the input one) and not consume all start_requests iterator because it can be very large
(or even unbounded) and cause a memory overflow. The Scrapy engine is designed to pull start requests
while it has capacity to process them, so the start requests iterator can be effectively endless where there
is some other condition for stopping the spider (like a time limit or item/page count).

Parameters

• start_requests (an iterable of Request) – the start requests

• spider (BaseSpider object) – the spider to whom the start requests belong

126 Chapter 6. Extending Scrapy

http://docs.python.org/library/exceptions.html#exceptions.Exception

Scrapy Documentation, Release 0.18.4

6.3.3 Built-in spider middleware reference

This page describes all spider middleware components that come with Scrapy. For information on how to use them
and how to write your own spider middleware, see the spider middleware usage guide.

For a list of the components enabled by default (and their orders) see the SPIDER_MIDDLEWARES_BASE setting.

DepthMiddleware

class scrapy.contrib.spidermiddleware.depth.DepthMiddleware
DepthMiddleware is a scrape middleware used for tracking the depth of each Request inside the site being
scraped. It can be used to limit the maximum depth to scrape or things like that.

The DepthMiddleware can be configured through the following settings (see the settings documentation for
more info):

•DEPTH_LIMIT - The maximum depth that will be allowed to crawl for any site. If zero, no limit will be
imposed.

•DEPTH_STATS - Whether to collect depth stats.

•DEPTH_PRIORITY - Whether to prioritize the requests based on their depth.

HttpErrorMiddleware

class scrapy.contrib.spidermiddleware.httperror.HttpErrorMiddleware
Filter out unsuccessful (erroneous) HTTP responses so that spiders don’t have to deal with them, which (most
of the time) imposes an overhead, consumes more resources, and makes the spider logic more complex.

According to the HTTP standard, successful responses are those whose status codes are in the 200-300 range.

If you still want to process response codes outside that range, you can specify which response codes the spider is able
to handle using the handle_httpstatus_list spider attribute.

For example, if you want your spider to handle 404 responses you can do this:

class MySpider(CrawlSpider):
handle_httpstatus_list = [404]

The handle_httpstatus_list key of Request.meta can also be used to specify which response codes to
allow on a per-request basis.

Keep in mind, however, that it’s usually a bad idea to handle non-200 responses, unless you really know what you’re
doing.

For more information see: HTTP Status Code Definitions.

OffsiteMiddleware

class scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware
Filters out Requests for URLs outside the domains covered by the spider.

This middleware filters out every request whose host names aren’t in the spider’s allowed_domains at-
tribute.

When your spider returns a request for a domain not belonging to those covered by the spider, this middleware
will log a debug message similar to this one:

6.3. Spider Middleware 127

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Scrapy Documentation, Release 0.18.4

DEBUG: Filtered offsite request to 'www.othersite.com': <GET http://www.othersite.com/some/page.html>

To avoid filling the log with too much noise, it will only print one of these messages for each new domain
filtered. So, for example, if another request for www.othersite.com is filtered, no log message will be
printed. But if a request for someothersite.com is filtered, a message will be printed (but only for the first
request filtered).

If the spider doesn’t define an allowed_domains attribute, or the attribute is empty, the offsite middleware
will allow all requests.

If the request has the dont_filter attribute set, the offsite middleware will allow the request even if its
domain is not listed in allowed domains.

RefererMiddleware

class scrapy.contrib.spidermiddleware.referer.RefererMiddleware
Populates Request Referer header, based on the URL of the Response which generated it.

RefererMiddleware settings

REFERER_ENABLED New in version 0.15.

Default: True

Whether to enable referer middleware.

UrlLengthMiddleware

class scrapy.contrib.spidermiddleware.urllength.UrlLengthMiddleware
Filters out requests with URLs longer than URLLENGTH_LIMIT

The UrlLengthMiddleware can be configured through the following settings (see the settings documenta-
tion for more info):

•URLLENGTH_LIMIT - The maximum URL length to allow for crawled URLs.

6.4 Extensions

The extensions framework provides a mechanism for inserting your own custom functionality into Scrapy.

Extensions are just regular classes that are instantiated at Scrapy startup, when extensions are initialized.

6.4.1 Extension settings

Extensions use the Scrapy settings to manage their settings, just like any other Scrapy code.

It is customary for extensions to prefix their settings with their own name, to avoid collision with existing (and future)
extensions. For example, an hypothetic extension to handle Google Sitemaps would use settings like GOOGLE-
SITEMAP_ENABLED, GOOGLESITEMAP_DEPTH, and so on.

128 Chapter 6. Extending Scrapy

http://en.wikipedia.org/wiki/Sitemaps

Scrapy Documentation, Release 0.18.4

6.4.2 Loading & activating extensions

Extensions are loaded and activated at startup by instantiating a single instance of the extension class. Therefore, all
the extension initialization code must be performed in the class constructor (__init__ method).

To make an extension available, add it to the EXTENSIONS setting in your Scrapy settings. In EXTENSIONS, each
extension is represented by a string: the full Python path to the extension’s class name. For example:

EXTENSIONS = {
'scrapy.contrib.corestats.CoreStats': 500,
'scrapy.webservice.WebService': 500,
'scrapy.telnet.TelnetConsole': 500,

}

As you can see, the EXTENSIONS setting is a dict where the keys are the extension paths, and their values are the
orders, which define the extension loading order. Extensions orders are not as important as middleware orders though,
and they are typically irrelevant, ie. it doesn’t matter in which order the extensions are loaded because they don’t
depend on each other [1].

However, this feature can be exploited if you need to add an extension which depends on other extensions already
loaded.

[1] This is is why the EXTENSIONS_BASE setting in Scrapy (which contains all built-in extensions enabled by
default) defines all the extensions with the same order (500).

6.4.3 Available, enabled and disabled extensions

Not all available extensions will be enabled. Some of them usually depend on a particular setting. For example, the
HTTP Cache extension is available by default but disabled unless the HTTPCACHE_ENABLED setting is set.

6.4.4 Disabling an extension

In order to disable an extension that comes enabled by default (ie. those included in the EXTENSIONS_BASE setting)
you must set its order to None. For example:

EXTENSIONS = {
'scrapy.contrib.corestats.CoreStats': None,

}

6.4.5 Writing your own extension

Writing your own extension is easy. Each extension is a single Python class which doesn’t need to implement any
particular method.

The main entry point for a Scrapy extension (this also includes middlewares and pipelines) is the from_crawler
class method which receives a Crawler instance which is the main object controlling the Scrapy crawler. Through
that object you can access settings, signals, stats, and also control the crawler behaviour, if your extension needs to
such thing.

Typically, extensions connect to signals and perform tasks triggered by them.

Finally, if the from_crawler method raises the NotConfigured exception, the extension will be disabled. Oth-
erwise, the extension will be enabled.

6.4. Extensions 129

Scrapy Documentation, Release 0.18.4

Sample extension

Here we will implement a simple extension to illustrate the concepts described in the previous section. This extension
will log a message every time:

• a spider is opened

• a spider is closed

• a specific number of items are scraped

The extension will be enabled through the MYEXT_ENABLED setting and the number of items will be specified through
the MYEXT_ITEMCOUNT setting.

Here is the code of such extension:

from scrapy import signals
from scrapy.exceptions import NotConfigured

class SpiderOpenCloseLogging(object):

def __init__(self, item_count):
self.item_count = item_count
self.items_scraped = 0

@classmethod
def from_crawler(cls, crawler):

first check if the extension should be enabled and raise
NotConfigured otherwise
if not crawler.settings.getbool('MYEXT_ENABLED'):

raise NotConfigured

get the number of items from settings
item_count = crawler.settings.getint('MYEXT_ITEMCOUNT', 1000)

instantiate the extension object
ext = cls(item_count)

connect the extension object to signals
crawler.signals.connect(ext.spider_opened, signal=signals.spider_opened)
crawler.signals.connect(ext.spider_closed, signal=signals.spider_closed)
crawler.signals.connect(ext.item_scraped, signal=signals.item_scraped)

return the extension object
return ext

def spider_opened(self, spider):
spider.log("opened spider %s" % spider.name)

def spider_closed(self, spider):
spider.log("closed spider %s" % spider.name)

def item_scraped(self, item, spider):
self.items_scraped += 1
if self.items_scraped == self.item_count:

spider.log("scraped %d items, resetting counter" % self.items_scraped)
self.item_count = 0

130 Chapter 6. Extending Scrapy

Scrapy Documentation, Release 0.18.4

6.4.6 Built-in extensions reference

General purpose extensions

Log Stats extension

class scrapy.contrib.logstats.LogStats

Log basic stats like crawled pages and scraped items.

Core Stats extension

class scrapy.contrib.corestats.CoreStats

Enable the collection of core statistics, provided the stats collection is enabled (see Stats Collection).

Web service extension

class scrapy.webservice.WebService

See topics-webservice.

Telnet console extension

class scrapy.telnet.TelnetConsole

Provides a telnet console for getting into a Python interpreter inside the currently running Scrapy process, which can
be very useful for debugging.

The telnet console must be enabled by the TELNETCONSOLE_ENABLED setting, and the server will listen in the port
specified in TELNETCONSOLE_PORT.

Memory usage extension

class scrapy.contrib.memusage.MemoryUsage

Note: This extension does not work in Windows.

Monitors the memory used by the Scrapy process that runs the spider and:

1, sends a notification e-mail when it exceeds a certain value 2. closes the spider when it exceeds a certain value

The notification e-mails can be triggered when a certain warning value is reached (MEMUSAGE_WARNING_MB) and
when the maximum value is reached (MEMUSAGE_LIMIT_MB) which will also cause the spider to be closed and the
Scrapy process to be terminated.

This extension is enabled by the MEMUSAGE_ENABLED setting and can be configured with the following settings:

• MEMUSAGE_LIMIT_MB

• MEMUSAGE_WARNING_MB

• MEMUSAGE_NOTIFY_MAIL

• MEMUSAGE_REPORT

6.4. Extensions 131

Scrapy Documentation, Release 0.18.4

Memory debugger extension

class scrapy.contrib.memdebug.MemoryDebugger

An extension for debugging memory usage. It collects information about:

• objects uncollected by the Python garbage collector

• libxml2 memory leaks

• objects left alive that shouldn’t. For more info, see Debugging memory leaks with trackref

To enable this extension, turn on the MEMDEBUG_ENABLED setting. The info will be stored in the stats.

Close spider extension

class scrapy.contrib.closespider.CloseSpider

Closes a spider automatically when some conditions are met, using a specific closing reason for each condition.

The conditions for closing a spider can be configured through the following settings:

• CLOSESPIDER_TIMEOUT

• CLOSESPIDER_ITEMCOUNT

• CLOSESPIDER_PAGECOUNT

• CLOSESPIDER_ERRORCOUNT

CLOSESPIDER_TIMEOUT Default: 0

An integer which specifies a number of seconds. If the spider remains open for more than that number of second, it
will be automatically closed with the reason closespider_timeout. If zero (or non set), spiders won’t be closed
by timeout.

CLOSESPIDER_ITEMCOUNT Default: 0

An integer which specifies a number of items. If the spider scrapes more than that amount if items and those items are
passed by the item pipeline, the spider will be closed with the reason closespider_itemcount. If zero (or non
set), spiders won’t be closed by number of passed items.

CLOSESPIDER_PAGECOUNT New in version 0.11.

Default: 0

An integer which specifies the maximum number of responses to crawl. If the spider crawls more than that, the spider
will be closed with the reason closespider_pagecount. If zero (or non set), spiders won’t be closed by number
of crawled responses.

CLOSESPIDER_ERRORCOUNT New in version 0.11.

Default: 0

An integer which specifies the maximum number of errors to receive before closing the spider. If the spider generates
more than that number of errors, it will be closed with the reason closespider_errorcount. If zero (or non
set), spiders won’t be closed by number of errors.

132 Chapter 6. Extending Scrapy

Scrapy Documentation, Release 0.18.4

StatsMailer extension

class scrapy.contrib.statsmailer.StatsMailer

This simple extension can be used to send a notification e-mail every time a domain has finished scraping, including
the Scrapy stats collected. The email will be sent to all recipients specified in the STATSMAILER_RCPTS setting.

Debugging extensions

Stack trace dump extension

class scrapy.contrib.debug.StackTraceDump

Dumps information about the running process when a SIGQUIT or SIGUSR2 signal is received. The information
dumped is the following:

1. engine status (using scrapy.utils.engine.get_engine_status())

2. live references (see Debugging memory leaks with trackref)

3. stack trace of all threads

After the stack trace and engine status is dumped, the Scrapy process continues running normally.

This extension only works on POSIX-compliant platforms (ie. not Windows), because the SIGQUIT and SIGUSR2
signals are not available on Windows.

There are at least two ways to send Scrapy the SIGQUIT signal:

1. By pressing Ctrl-while a Scrapy process is running (Linux only?)

2. By running this command (assuming <pid> is the process id of the Scrapy process):

kill -QUIT <pid>

Debugger extension

class scrapy.contrib.debug.Debugger

Invokes a Python debugger inside a running Scrapy process when a SIGUSR2 signal is received. After the debugger
is exited, the Scrapy process continues running normally.

For more info see Debugging in Python.

This extension only works on POSIX-compliant platforms (ie. not Windows).

6.5 Core API

New in version 0.15.

This section documents the Scrapy core API, and it’s intended for developers of extensions and middlewares.

6.5. Core API 133

http://en.wikipedia.org/wiki/SIGQUIT
http://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2
http://en.wikipedia.org/wiki/SIGQUIT
http://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2
http://en.wikipedia.org/wiki/SIGQUIT
http://docs.python.org/library/pdb.html
http://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2

Scrapy Documentation, Release 0.18.4

6.5.1 Crawler API

The main entry point to Scrapy API is the Crawler object, passed to extensions through the from_crawler class
method. This object provides access to all Scrapy core components, and it’s the only way for extensions to access
them and hook their functionality into Scrapy. The Extension Manager is responsible for loading and keeping track of
installed extensions and it’s configured through the EXTENSIONS setting which contains a dictionary of all available
extensions and their order similar to how you configure the downloader middlewares.

class scrapy.crawler.Crawler(settings)
The Crawler object must be instantiated with a scrapy.settings.Settings object.

settings
The settings manager of this crawler.

This is used by extensions & middlewares to access the Scrapy settings of this crawler.

For an introduction on Scrapy settings see Settings.

For the API see Settings class.

signals
The signals manager of this crawler.

This is used by extensions & middlewares to hook themselves into Scrapy functionality.

For an introduction on signals see Signals.

For the API see SignalManager class.

stats
The stats collector of this crawler.

This is used from extensions & middlewares to record stats of their behaviour, or access stats collected by
other extensions.

For an introduction on stats collection see Stats Collection.

For the API see StatsCollector class.

extensions
The extension manager that keeps track of enabled extensions.

Most extensions won’t need to access this attribute.

For an introduction on extensions and a list of available extensions on Scrapy see Extensions.

spiders
The spider manager which takes care of loading and instantiating spiders.

Most extensions won’t need to access this attribute.

engine
The execution engine, which coordinates the core crawling logic between the scheduler, downloader and
spiders.

Some extension may want to access the Scrapy engine, to modify inspect or modify the downloader and
scheduler behaviour, although this is an advanced use and this API is not yet stable.

configure()
Configure the crawler.

This loads extensions, middlewares and spiders, leaving the crawler ready to be started. It also configures
the execution engine.

134 Chapter 6. Extending Scrapy

Scrapy Documentation, Release 0.18.4

start()
Start the crawler. This calls configure() if it hasn’t been called yet. Returns a deferred that is fired
when the crawl is finished.

6.5.2 Settings API

class scrapy.settings.Settings
This object that provides access to Scrapy settings.

overrides
Global overrides are the ones that take most precedence, and are usually populated by command-line
options.

Overrides should be populated before configuring the Crawler object (through the configure()
method), otherwise they won’t have any effect. You don’t typically need to worry about overrides un-
less you are implementing your own Scrapy command.

get(name, default=None)
Get a setting value without affecting its original type.

Parameters

• name (string) – the setting name

• default (any) – the value to return if no setting is found

getbool(name, default=False)
Get a setting value as a boolean. For example, both 1 and ’1’, and True return True, while 0, ’0’,
False and None return False‘‘

For example, settings populated through environment variables set to ’0’ will return False when using
this method.

Parameters

• name (string) – the setting name

• default (any) – the value to return if no setting is found

getint(name, default=0)
Get a setting value as an int

Parameters

• name (string) – the setting name

• default (any) – the value to return if no setting is found

getfloat(name, default=0.0)
Get a setting value as a float

Parameters

• name (string) – the setting name

• default (any) – the value to return if no setting is found

getlist(name, default=None)
Get a setting value as a list. If the setting original type is a list it will be returned verbatim. If it’s a string
it will be split by ”,”.

For example, settings populated through environment variables set to ’one,two’will return a list [’one’,
‘two’] when using this method.

6.5. Core API 135

Scrapy Documentation, Release 0.18.4

Parameters

• name (string) – the setting name

• default (any) – the value to return if no setting is found

6.5.3 Signals API

class scrapy.signalmanager.SignalManager

connect(receiver, signal)
Connect a receiver function to a signal.

The signal can be any object, although Scrapy comes with some predefined signals that are documented in
the Signals section.

Parameters

• receiver (callable) – the function to be connected

• signal (object) – the signal to connect to

send_catch_log(signal, **kwargs)
Send a signal, catch exceptions and log them.

The keyword arguments are passed to the signal handlers (connected through the connect() method).

send_catch_log_deferred(signal, **kwargs)
Like send_catch_log() but supports returning deferreds from signal handlers.

Returns a deferred that gets fired once all signal handlers deferreds were fired. Send a signal, catch excep-
tions and log them.

The keyword arguments are passed to the signal handlers (connected through the connect() method).

disconnect(receiver, signal)
Disconnect a receiver function from a signal. This has the opposite effect of the connect() method, and
the arguments are the same.

disconnect_all(signal)
Disconnect all receivers from the given signal.

Parameters signal (object) – the signal to disconnect from

6.5.4 Stats Collector API

There are several Stats Collectors available under the scrapy.statscol module and they all implement the Stats
Collector API defined by the StatsCollector class (which they all inherit from).

class scrapy.statscol.StatsCollector

get_value(key, default=None)
Return the value for the given stats key or default if it doesn’t exist.

get_stats()
Get all stats from the currently running spider as a dict.

set_value(key, value)
Set the given value for the given stats key.

136 Chapter 6. Extending Scrapy

http://twistedmatrix.com/documents/current/core/howto/defer.html
http://twistedmatrix.com/documents/current/core/howto/defer.html

Scrapy Documentation, Release 0.18.4

set_stats(stats)
Override the current stats with the dict passed in stats argument.

inc_value(key, count=1, start=0)
Increment the value of the given stats key, by the given count, assuming the start value given (when it’s not
set).

max_value(key, value)
Set the given value for the given key only if current value for the same key is lower than value. If there is
no current value for the given key, the value is always set.

min_value(key, value)
Set the given value for the given key only if current value for the same key is greater than value. If there is
no current value for the given key, the value is always set.

clear_stats()
Clear all stats.

The following methods are not part of the stats collection api but instead used when implementing custom stats
collectors:

open_spider(spider)
Open the given spider for stats collection.

close_spider(spider)
Close the given spider. After this is called, no more specific stats can be accessed or collected.

Architecture overview Understand the Scrapy architecture.

Downloader Middleware Customize how pages get requested and downloaded.

Spider Middleware Customize the input and output of your spiders.

Extensions Extend Scrapy with your custom functionality

Core API Use it on extensions and middlewares to extend Scrapy functionality

6.5. Core API 137

Scrapy Documentation, Release 0.18.4

138 Chapter 6. Extending Scrapy

CHAPTER 7

Reference

7.1 Requests and Responses

Scrapy uses Request and Response objects for crawling web sites.

Typically, Request objects are generated in the spiders and pass across the system until they reach the Downloader,
which executes the request and returns a Response object which travels back to the spider that issued the request.

Both Request and Response classes have subclasses which add functionality not required in the base classes.
These are described below in Request subclasses and Response subclasses.

7.1.1 Request objects

class scrapy.http.Request(url[, method=’GET’, body, headers, cookies, meta, encoding=’utf-8’, pri-
ority=0, dont_filter=False, callback, errback])

A Request object represents an HTTP request, which is usually generated in the Spider and executed by the
Downloader, and thus generating a Response.

Parameters

• url (string) – the URL of this request

• method (string) – the HTTP method of this request. Defaults to ’GET’.

• meta (dict) – the initial values for the Request.meta attribute. If given, the dict passed
in this parameter will be shallow copied.

• body (str or unicode) – the request body. If a unicode is passed, then it’s encoded
to str using the encoding passed (which defaults to utf-8). If body is not given„ an
empty string is stored. Regardless of the type of this argument, the final value stored will be
a str‘ (never unicode or None).

• headers (dict) – the headers of this request. The dict values can be strings (for single
valued headers) or lists (for multi-valued headers).

• cookies (dict or list) – the request cookies. These can be sent in two forms.

1. Using a dict:

request_with_cookies = Request(url="http://www.example.com",
cookies={'currency': 'USD', 'country': 'UY'})

2. Using a list of dicts:

139

Scrapy Documentation, Release 0.18.4

request_with_cookies = Request(url="http://www.example.com",
cookies=[{'name': 'currency',

'value': 'USD',
'domain': 'example.com',
'path': '/currency'}])

The latter form allows for customizing the domain and path attributes of the cookie.
These is only useful if the cookies are saved for later requests.

When some site returns cookies (in a response) those are stored in the cookies for that do-
main and will be sent again in future requests. That’s the typical behaviour of any regular
web browser. However, if, for some reason, you want to avoid merging with existing cook-
ies you can instruct Scrapy to do so by setting the dont_merge_cookies key in the
Request.meta.

Example of request without merging cookies:

request_with_cookies = Request(url="http://www.example.com",
cookies={'currency': 'USD', 'country': 'UY'},
meta={'dont_merge_cookies': True})

For more info see CookiesMiddleware.

• encoding (string) – the encoding of this request (defaults to ’utf-8’). This encod-
ing will be used to percent-encode the URL and to convert the body to str (if given as
unicode).

• priority (int) – the priority of this request (defaults to 0). The priority is used by the
scheduler to define the order used to process requests.

• dont_filter (boolean) – indicates that this request should not be filtered by the sched-
uler. This is used when you want to perform an identical request multiple times, to ignore
the duplicates filter. Use it with care, or you will get into crawling loops. Default to False.

• callback (callable) – the function that will be called with the response of this re-
quest (once its downloaded) as its first parameter. For more information see Passing addi-
tional data to callback functions below. If a Request doesn’t specify a callback, the spider’s
parse() method will be used.

• errback (callable) – a function that will be called if any exception was raised while
processing the request. This includes pages that failed with 404 HTTP errors and such. It
receives a Twisted Failure instance as first parameter.

url
A string containing the URL of this request. Keep in mind that this attribute contains the escaped URL, so
it can differ from the URL passed in the constructor.

This attribute is read-only. To change the URL of a Request use replace().

method
A string representing the HTTP method in the request. This is guaranteed to be uppercase. Example:
"GET", "POST", "PUT", etc

headers
A dictionary-like object which contains the request headers.

body
A str that contains the request body.

This attribute is read-only. To change the body of a Request use replace().

140 Chapter 7. Reference

http://twistedmatrix.com/documents/8.2.0/api/twisted.python.failure.Failure.html

Scrapy Documentation, Release 0.18.4

meta
A dict that contains arbitrary metadata for this request. This dict is empty for new Requests, and is usually
populated by different Scrapy components (extensions, middlewares, etc). So the data contained in this
dict depends on the extensions you have enabled.

See Request.meta special keys for a list of special meta keys recognized by Scrapy.

This dict is shallow copied when the request is cloned using the copy() or replace() methods, and
can also be accessed, in your spider, from the response.meta attribute.

copy()
Return a new Request which is a copy of this Request. See also: Passing additional data to callback
functions.

replace([url, method, headers, body, cookies, meta, encoding, dont_filter, callback, errback])
Return a Request object with the same members, except for those members given new values by whichever
keyword arguments are specified. The attribute Request.meta is copied by default (unless a new value
is given in the meta argument). See also Passing additional data to callback functions.

Passing additional data to callback functions

The callback of a request is a function that will be called when the response of that request is downloaded. The
callback function will be called with the downloaded Response object as its first argument.

Example:

def parse_page1(self, response):
return Request("http://www.example.com/some_page.html",

callback=self.parse_page2)

def parse_page2(self, response):
this would log http://www.example.com/some_page.html
self.log("Visited %s" % response.url)

In some cases you may be interested in passing arguments to those callback functions so you can receive the arguments
later, in the second callback. You can use the Request.meta attribute for that.

Here’s an example of how to pass an item using this mechanism, to populate different fields from different pages:

def parse_page1(self, response):
item = MyItem()
item['main_url'] = response.url
request = Request("http://www.example.com/some_page.html",

callback=self.parse_page2)
request.meta['item'] = item
return request

def parse_page2(self, response):
item = response.meta['item']
item['other_url'] = response.url
return item

7.1.2 Request.meta special keys

The Request.meta attribute can contain any arbitrary data, but there are some special keys recognized by Scrapy
and its built-in extensions.

Those are:

7.1. Requests and Responses 141

http://docs.python.org/library/copy.html

Scrapy Documentation, Release 0.18.4

• dont_redirect

• dont_retry

• handle_httpstatus_list

• dont_merge_cookies (see cookies parameter of Request constructor)

• cookiejar

• redirect_urls

7.1.3 Request subclasses

Here is the list of built-in Request subclasses. You can also subclass it to implement your own custom functionality.

FormRequest objects

The FormRequest class extends the base Requestwith functionality for dealing with HTML forms. It uses lxml.html
forms to pre-populate form fields with form data from Response objects.

class scrapy.http.FormRequest(url[, formdata, ...])
The FormRequest class adds a new argument to the constructor. The remaining arguments are the same as
for the Request class and are not documented here.

Parameters formdata (dict or iterable of tuples) – is a dictionary (or iterable of
(key, value) tuples) containing HTML Form data which will be url-encoded and assigned to the
body of the request.

The FormRequest objects support the following class method in addition to the standard Request methods:

classmethod from_response(response[, formname=None, formnumber=0, formdata=None, formx-
path=None, dont_click=False, ...])

Returns a new FormRequest object with its form field values pre-populated with those found in
the HTML <form> element contained in the given response. For an example see Using FormRe-
quest.from_response() to simulate a user login.

The policy is to automatically simulate a click, by default, on any form control that looks clickable, like
a <input type="submit">. Even though this is quite convenient, and often the desired behaviour,
sometimes it can cause problems which could be hard to debug. For example, when working with forms
that are filled and/or submitted using javascript, the default from_response() behaviour may not be
the most appropriate. To disable this behaviour you can set the dont_click argument to True. Also, if
you want to change the control clicked (instead of disabling it) you can also use the clickdata argument.

Parameters

• response (Response object) – the response containing a HTML form which will be
used to pre-populate the form fields

• formname (string) – if given, the form with name attribute set to this value will be
used.

• formxpath (string) – if given, the first form that matches the xpath will be used.

• formnumber (integer) – the number of form to use, when the response contains
multiple forms. The first one (and also the default) is 0.

• formdata (dict) – fields to override in the form data. If a field was already present in
the response <form> element, its value is overridden by the one passed in this parameter.

142 Chapter 7. Reference

http://lxml.de/lxmlhtml.html#forms
http://lxml.de/lxmlhtml.html#forms

Scrapy Documentation, Release 0.18.4

• dont_click (boolean) – If True, the form data will be submitted without clicking in
any element.

The other parameters of this class method are passed directly to the FormRequest constructor.

New in version 0.10.3: The formname parameter.

New in version 0.17: The formxpath parameter.

Request usage examples

Using FormRequest to send data via HTTP POST

If you want to simulate a HTML Form POST in your spider and send a couple of key-value fields, you can return a
FormRequest object (from your spider) like this:

return [FormRequest(url="http://www.example.com/post/action",
formdata={'name': 'John Doe', 'age': '27'},
callback=self.after_post)]

Using FormRequest.from_response() to simulate a user login

It is usual for web sites to provide pre-populated form fields through <input type="hidden"> elements, such
as session related data or authentication tokens (for login pages). When scraping, you’ll want these fields to be
automatically pre-populated and only override a couple of them, such as the user name and password. You can use the
FormRequest.from_response() method for this job. Here’s an example spider which uses it:

class LoginSpider(BaseSpider):
name = 'example.com'
start_urls = ['http://www.example.com/users/login.php']

def parse(self, response):
return [FormRequest.from_response(response,

formdata={'username': 'john', 'password': 'secret'},
callback=self.after_login)]

def after_login(self, response):
check login succeed before going on
if "authentication failed" in response.body:

self.log("Login failed", level=log.ERROR)
return

continue scraping with authenticated session...

7.1.4 Response objects

class scrapy.http.Response(url[, status=200, headers, body, flags])
A Response object represents an HTTP response, which is usually downloaded (by the Downloader) and fed
to the Spiders for processing.

Parameters

• url (string) – the URL of this response

• headers (dict) – the headers of this response. The dict values can be strings (for single
valued headers) or lists (for multi-valued headers).

7.1. Requests and Responses 143

Scrapy Documentation, Release 0.18.4

• status (integer) – the HTTP status of the response. Defaults to 200.

• body (str) – the response body. It must be str, not unicode, unless you’re using a
encoding-aware Response subclass, such as TextResponse.

• meta (dict) – the initial values for the Response.meta attribute. If given, the dict will
be shallow copied.

• flags (list) – is a list containing the initial values for the Response.flags attribute.
If given, the list will be shallow copied.

url
A string containing the URL of the response.

This attribute is read-only. To change the URL of a Response use replace().

status
An integer representing the HTTP status of the response. Example: 200, 404.

headers
A dictionary-like object which contains the response headers.

body
A str containing the body of this Response. Keep in mind that Reponse.body is always a str. If you want
the unicode version use TextResponse.body_as_unicode() (only available in TextResponse
and subclasses).

This attribute is read-only. To change the body of a Response use replace().

request
The Request object that generated this response. This attribute is assigned in the Scrapy engine, after
the response and the request have passed through all Downloader Middlewares. In particular, this means
that:

•HTTP redirections will cause the original request (to the URL before redirection) to be assigned to
the redirected response (with the final URL after redirection).

•Response.request.url doesn’t always equal Response.url

•This attribute is only available in the spider code, and in the Spider Middlewares, but not in Down-
loader Middlewares (although you have the Request available there by other means) and handlers of
the response_downloaded signal.

meta
A shortcut to the Request.meta attribute of the Response.request object (ie.
self.request.meta).

Unlike the Response.request attribute, the Response.meta attribute is propagated along redirects
and retries, so you will get the original Request.meta sent from your spider.

See also:

Request.meta attribute

flags
A list that contains flags for this response. Flags are labels used for tagging Responses. For example:
‘cached’, ‘redirected‘, etc. And they’re shown on the string representation of the Response (__str__
method) which is used by the engine for logging.

copy()
Returns a new Response which is a copy of this Response.

144 Chapter 7. Reference

Scrapy Documentation, Release 0.18.4

replace([url, status, headers, body, request, flags, cls])
Returns a Response object with the same members, except for those members given new values by
whichever keyword arguments are specified. The attribute Response.meta is copied by default.

7.1.5 Response subclasses

Here is the list of available built-in Response subclasses. You can also subclass the Response class to implement your
own functionality.

TextResponse objects

class scrapy.http.TextResponse(url[, encoding[, ...]])
TextResponse objects adds encoding capabilities to the base Response class, which is meant to be used
only for binary data, such as images, sounds or any media file.

TextResponse objects support a new constructor argument, in addition to the base Response objects. The
remaining functionality is the same as for the Response class and is not documented here.

Parameters encoding (string) – is a string which contains the encoding to use for this re-
sponse. If you create a TextResponse object with a unicode body, it will be encoded using
this encoding (remember the body attribute is always a string). If encoding is None (default
value), the encoding will be looked up in the response headers and body instead.

TextResponse objects support the following attributes in addition to the standard Response ones:

encoding
A string with the encoding of this response. The encoding is resolved by trying the following mechanisms,
in order:

1.the encoding passed in the constructor encoding argument

2.the encoding declared in the Content-Type HTTP header. If this encoding is not valid (ie. unknown),
it is ignored and the next resolution mechanism is tried.

3.the encoding declared in the response body. The TextResponse class doesn’t provide any special
functionality for this. However, the HtmlResponse and XmlResponse classes do.

4.the encoding inferred by looking at the response body. This is the more fragile method but also the
last one tried.

TextResponse objects support the following methods in addition to the standard Response ones:

body_as_unicode()
Returns the body of the response as unicode. This is equivalent to:

response.body.decode(response.encoding)

But not equivalent to:

unicode(response.body)

Since, in the latter case, you would be using you system default encoding (typically ascii) to convert the
body to uniode, instead of the response encoding.

7.1. Requests and Responses 145

Scrapy Documentation, Release 0.18.4

HtmlResponse objects

class scrapy.http.HtmlResponse(url[, ...])
The HtmlResponse class is a subclass of TextResponse which adds encoding auto-discovering support
by looking into the HTML meta http-equiv attribute. See TextResponse.encoding.

XmlResponse objects

class scrapy.http.XmlResponse(url[, ...])
The XmlResponse class is a subclass of TextResponse which adds encoding auto-discovering support by
looking into the XML declaration line. See TextResponse.encoding.

7.2 Settings

The Scrapy settings allows you to customize the behaviour of all Scrapy components, including the core, extensions,
pipelines and spiders themselves.

The infrastructure of the settings provides a global namespace of key-value mappings that the code can use to pull
configuration values from. The settings can be populated through different mechanisms, which are described below.

The settings are also the mechanism for selecting the currently active Scrapy project (in case you have many).

For a list of available built-in settings see: Built-in settings reference.

7.2.1 Designating the settings

When you use Scrapy, you have to tell it which settings you’re using. You can do this by using an environment variable,
SCRAPY_SETTINGS_MODULE.

The value of SCRAPY_SETTINGS_MODULE should be in Python path syntax, e.g. myproject.settings. Note
that the settings module should be on the Python import search path.

7.2.2 Populating the settings

Settings can be populated using different mechanisms, each of which having a different precedence. Here is the list of
them in decreasing order of precedence:

1. Global overrides (most precedence)

2. Project settings module

3. Default settings per-command

4. Default global settings (less precedence)

These mechanisms are described in more detail below.

1. Global overrides

Global overrides are the ones that take most precedence, and are usually populated by command-line options. You can
also override one (or more) settings from command line using the -s (or --set) command line option.

For more information see the overrides Settings attribute.

146 Chapter 7. Reference

http://www.w3schools.com/TAGS/att_meta_http_equiv.asp
http://docs.python.org/2/tutorial/modules.html#the-module-search-path

Scrapy Documentation, Release 0.18.4

Example:

scrapy crawl domain.com -s LOG_FILE=scrapy.log

2. Project settings module

The project settings module is the standard configuration file for your Scrapy project. It’s where most of your custom
settings will be populated. For example:: myproject.settings.

3. Default settings per-command

Each Scrapy tool command can have its own default settings, which override the global default settings. Those custom
command settings are specified in the default_settings attribute of the command class.

4. Default global settings

The global defaults are located in the scrapy.settings.default_settings module and documented in the
Built-in settings reference section.

7.2.3 How to access settings

Settings can be accessed through the scrapy.crawler.Crawler.settings attribute of the Crawler that is
passed to from_crawler method in extensions and middlewares:

class MyExtension(object):

@classmethod
def from_crawler(cls, crawler):

settings = crawler.settings
if settings['LOG_ENABLED']:

print "log is enabled!"

In other words, settings can be accessed like a dict, but it’s usually preferred to extract the setting in the format you
need it to avoid type errors. In order to do that you’ll have to use one of the methods provided the Settings API.

7.2.4 Rationale for setting names

Setting names are usually prefixed with the component that they configure. For example, proper setting names for
a fictional robots.txt extension would be ROBOTSTXT_ENABLED, ROBOTSTXT_OBEY, ROBOTSTXT_CACHEDIR,
etc.

7.2.5 Built-in settings reference

Here’s a list of all available Scrapy settings, in alphabetical order, along with their default values and the scope where
they apply.

The scope, where available, shows where the setting is being used, if it’s tied to any particular component. In that case
the module of that component will be shown, typically an extension, middleware or pipeline. It also means that the
component must be enabled in order for the setting to have any effect.

7.2. Settings 147

Scrapy Documentation, Release 0.18.4

AWS_ACCESS_KEY_ID

Default: None

The AWS access key used by code that requires access to Amazon Web services, such as the S3 feed storage backend.

AWS_SECRET_ACCESS_KEY

Default: None

The AWS secret key used by code that requires access to Amazon Web services, such as the S3 feed storage backend.

BOT_NAME

Default: ’scrapybot’

The name of the bot implemented by this Scrapy project (also known as the project name). This will be used to
construct the User-Agent by default, and also for logging.

It’s automatically populated with your project name when you create your project with the startproject com-
mand.

CONCURRENT_ITEMS

Default: 100

Maximum number of concurrent items (per response) to process in parallel in the Item Processor (also known as the
Item Pipeline).

CONCURRENT_REQUESTS

Default: 16

The maximum number of concurrent (ie. simultaneous) requests that will be performed by the Scrapy downloader.

CONCURRENT_REQUESTS_PER_DOMAIN

Default: 8

The maximum number of concurrent (ie. simultaneous) requests that will be performed to any single domain.

CONCURRENT_REQUESTS_PER_IP

Default: 0

The maximum number of concurrent (ie. simultaneous) requests that will be performed to any single IP. If non-
zero, the CONCURRENT_REQUESTS_PER_DOMAIN setting is ignored, and this one is used instead. In other words,
concurrency limits will be applied per IP, not per domain.

148 Chapter 7. Reference

http://aws.amazon.com/
http://aws.amazon.com/

Scrapy Documentation, Release 0.18.4

DEFAULT_ITEM_CLASS

Default: ’scrapy.item.Item’

The default class that will be used for instantiating items in the the Scrapy shell.

DEFAULT_REQUEST_HEADERS

Default:

{
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en',

}

The default headers used for Scrapy HTTP Requests. They’re populated in the DefaultHeadersMiddleware.

DEPTH_LIMIT

Default: 0

The maximum depth that will be allowed to crawl for any site. If zero, no limit will be imposed.

DEPTH_PRIORITY

Default: 0

An integer that is used to adjust the request priority based on its depth.

If zero, no priority adjustment is made from depth.

DEPTH_STATS

Default: True

Whether to collect maximum depth stats.

DEPTH_STATS_VERBOSE

Default: False

Whether to collect verbose depth stats. If this is enabled, the number of requests for each depth is collected in the
stats.

DNSCACHE_ENABLED

Default: True

Whether to enable DNS in-memory cache.

7.2. Settings 149

Scrapy Documentation, Release 0.18.4

DOWNLOADER_DEBUG

Default: False

Whether to enable the Downloader debugging mode.

DOWNLOADER_MIDDLEWARES

Default:: {}

A dict containing the downloader middlewares enabled in your project, and their orders. For more info see Activating
a downloader middleware.

DOWNLOADER_MIDDLEWARES_BASE

Default:

{
'scrapy.contrib.downloadermiddleware.robotstxt.RobotsTxtMiddleware': 100,
'scrapy.contrib.downloadermiddleware.httpauth.HttpAuthMiddleware': 300,
'scrapy.contrib.downloadermiddleware.downloadtimeout.DownloadTimeoutMiddleware': 350,
'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': 400,
'scrapy.contrib.downloadermiddleware.retry.RetryMiddleware': 500,
'scrapy.contrib.downloadermiddleware.defaultheaders.DefaultHeadersMiddleware': 550,
'scrapy.contrib.downloadermiddleware.redirect.MetaRefreshMiddleware': 580,
'scrapy.contrib.downloadermiddleware.httpcompression.HttpCompressionMiddleware': 590,
'scrapy.contrib.downloadermiddleware.redirect.RedirectMiddleware': 600,
'scrapy.contrib.downloadermiddleware.cookies.CookiesMiddleware': 700,
'scrapy.contrib.downloadermiddleware.httpproxy.HttpProxyMiddleware': 750,
'scrapy.contrib.downloadermiddleware.chunked.ChunkedTransferMiddleware': 830,
'scrapy.contrib.downloadermiddleware.stats.DownloaderStats': 850,
'scrapy.contrib.downloadermiddleware.httpcache.HttpCacheMiddleware': 900,

}

A dict containing the downloader middlewares enabled by default in Scrapy. You should never modify this setting in
your project, modify DOWNLOADER_MIDDLEWARES instead. For more info see Activating a downloader middle-
ware.

DOWNLOADER_STATS

Default: True

Whether to enable downloader stats collection.

DOWNLOAD_DELAY

Default: 0

The amount of time (in secs) that the downloader should wait before downloading consecutive pages from the same
spider. This can be used to throttle the crawling speed to avoid hitting servers too hard. Decimal numbers are sup-
ported. Example:

DOWNLOAD_DELAY = 0.25 # 250 ms of delay

150 Chapter 7. Reference

Scrapy Documentation, Release 0.18.4

This setting is also affected by the RANDOMIZE_DOWNLOAD_DELAY setting (which is enabled by default). By
default, Scrapy doesn’t wait a fixed amount of time between requests, but uses a random interval between 0.5 and 1.5
* DOWNLOAD_DELAY .

You can also change this setting per spider.

DOWNLOAD_HANDLERS

Default: {}

A dict containing the request downloader handlers enabled in your project. See DOWNLOAD_HANDLERS_BASE for
example format.

DOWNLOAD_HANDLERS_BASE

Default:

{
'file': 'scrapy.core.downloader.handlers.file.FileDownloadHandler',
'http': 'scrapy.core.downloader.handlers.http.HttpDownloadHandler',
'https': 'scrapy.core.downloader.handlers.http.HttpDownloadHandler',
's3': 'scrapy.core.downloader.handlers.s3.S3DownloadHandler',

}

A dict containing the request download handlers enabled by default in Scrapy. You should never modify this setting in
your project, modify DOWNLOAD_HANDLERS instead.

DOWNLOAD_TIMEOUT

Default: 180

The amount of time (in secs) that the downloader will wait before timing out.

DUPEFILTER_CLASS

Default: ’scrapy.dupefilter.RFPDupeFilter’

The class used to detect and filter duplicate requests.

The default (RFPDupeFilter) filters based on request fingerprint using the
scrapy.utils.request.request_fingerprint function.

EDITOR

Default: depends on the environment

The editor to use for editing spiders with the edit command. It defaults to the EDITOR environment variable, if set.
Otherwise, it defaults to vi (on Unix systems) or the IDLE editor (on Windows).

EXTENSIONS

Default:: {}

A dict containing the extensions enabled in your project, and their orders.

7.2. Settings 151

Scrapy Documentation, Release 0.18.4

EXTENSIONS_BASE

Default:

{
'scrapy.contrib.corestats.CoreStats': 0,
'scrapy.webservice.WebService': 0,
'scrapy.telnet.TelnetConsole': 0,
'scrapy.contrib.memusage.MemoryUsage': 0,
'scrapy.contrib.memdebug.MemoryDebugger': 0,
'scrapy.contrib.closespider.CloseSpider': 0,
'scrapy.contrib.feedexport.FeedExporter': 0,
'scrapy.contrib.logstats.LogStats': 0,
'scrapy.contrib.spiderstate.SpiderState': 0,
'scrapy.contrib.throttle.AutoThrottle': 0,

}

The list of available extensions. Keep in mind that some of them need to be enabled through a setting. By default, this
setting contains all stable built-in extensions.

For more information See the extensions user guide and the list of available extensions.

ITEM_PIPELINES

Default: []

The item pipelines to use (a list of classes).

Example:

ITEM_PIPELINES = [
'mybot.pipeline.validate.ValidateMyItem',
'mybot.pipeline.validate.StoreMyItem'

]

LOG_ENABLED

Default: True

Whether to enable logging.

LOG_ENCODING

Default: ’utf-8’

The encoding to use for logging.

LOG_FILE

Default: None

File name to use for logging output. If None, standard error will be used.

152 Chapter 7. Reference

Scrapy Documentation, Release 0.18.4

LOG_LEVEL

Default: ’DEBUG’

Minimum level to log. Available levels are: CRITICAL, ERROR, WARNING, INFO, DEBUG. For more info see
Logging.

LOG_STDOUT

Default: False

If True, all standard output (and error) of your process will be redirected to the log. For example if you print
’hello’ it will appear in the Scrapy log.

MEMDEBUG_ENABLED

Default: False

Whether to enable memory debugging.

MEMDEBUG_NOTIFY

Default: []

When memory debugging is enabled a memory report will be sent to the specified addresses if this setting is not empty,
otherwise the report will be written to the log.

Example:

MEMDEBUG_NOTIFY = ['user@example.com']

MEMUSAGE_ENABLED

Default: False

Scope: scrapy.contrib.memusage

Whether to enable the memory usage extension that will shutdown the Scrapy process when it exceeds a memory limit,
and also notify by email when that happened.

See Memory usage extension.

MEMUSAGE_LIMIT_MB

Default: 0

Scope: scrapy.contrib.memusage

The maximum amount of memory to allow (in megabytes) before shutting down Scrapy (if MEMUSAGE_ENABLED
is True). If zero, no check will be performed.

See Memory usage extension.

7.2. Settings 153

Scrapy Documentation, Release 0.18.4

MEMUSAGE_NOTIFY_MAIL

Default: False

Scope: scrapy.contrib.memusage

A list of emails to notify if the memory limit has been reached.

Example:

MEMUSAGE_NOTIFY_MAIL = ['user@example.com']

See Memory usage extension.

MEMUSAGE_REPORT

Default: False

Scope: scrapy.contrib.memusage

Whether to send a memory usage report after each spider has been closed.

See Memory usage extension.

MEMUSAGE_WARNING_MB

Default: 0

Scope: scrapy.contrib.memusage

The maximum amount of memory to allow (in megabytes) before sending a warning email notifying about it. If zero,
no warning will be produced.

NEWSPIDER_MODULE

Default: ’’

Module where to create new spiders using the genspider command.

Example:

NEWSPIDER_MODULE = 'mybot.spiders_dev'

RANDOMIZE_DOWNLOAD_DELAY

Default: True

If enabled, Scrapy will wait a random amount of time (between 0.5 and 1.5 * DOWNLOAD_DELAY) while fetching
requests from the same spider.

This randomization decreases the chance of the crawler being detected (and subsequently blocked) by sites which
analyze requests looking for statistically significant similarities in the time between their requests.

The randomization policy is the same used by wget --random-wait option.

If DOWNLOAD_DELAY is zero (default) this option has no effect.

154 Chapter 7. Reference

http://www.gnu.org/software/wget/manual/wget.html

Scrapy Documentation, Release 0.18.4

REDIRECT_MAX_TIMES

Default: 20

Defines the maximum times a request can be redirected. After this maximum the request’s response is returned as is.
We used Firefox default value for the same task.

REDIRECT_MAX_METAREFRESH_DELAY

Default: 100

Some sites use meta-refresh for redirecting to a session expired page, so we restrict automatic redirection to a maxi-
mum delay (in seconds)

REDIRECT_PRIORITY_ADJUST

Default: +2

Adjust redirect request priority relative to original request. A negative priority adjust means more priority.

ROBOTSTXT_OBEY

Default: False

Scope: scrapy.contrib.downloadermiddleware.robotstxt

If enabled, Scrapy will respect robots.txt policies. For more information see RobotsTxtMiddleware

SCHEDULER

Default: ’scrapy.core.scheduler.Scheduler’

The scheduler to use for crawling.

SPIDER_CONTRACTS

Default:: {}

A dict containing the scrapy contracts enabled in your project, used for testing spiders. For more info see Spiders
Contracts.

SPIDER_CONTRACTS_BASE

Default:

{
'scrapy.contracts.default.UrlContract' : 1,
'scrapy.contracts.default.ReturnsContract': 2,
'scrapy.contracts.default.ScrapesContract': 3,

}

A dict containing the scrapy contracts enabled by default in Scrapy. You should never modify this setting in your
project, modify SPIDER_CONTRACTS instead. For more info see Spiders Contracts.

7.2. Settings 155

Scrapy Documentation, Release 0.18.4

SPIDER_MIDDLEWARES

Default:: {}

A dict containing the spider middlewares enabled in your project, and their orders. For more info see Activating a
spider middleware.

SPIDER_MIDDLEWARES_BASE

Default:

{
'scrapy.contrib.spidermiddleware.httperror.HttpErrorMiddleware': 50,
'scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware': 500,
'scrapy.contrib.spidermiddleware.referer.RefererMiddleware': 700,
'scrapy.contrib.spidermiddleware.urllength.UrlLengthMiddleware': 800,
'scrapy.contrib.spidermiddleware.depth.DepthMiddleware': 900,

}

A dict containing the spider middlewares enabled by default in Scrapy. You should never modify this setting in your
project, modify SPIDER_MIDDLEWARES instead. For more info see Activating a spider middleware.

SPIDER_MODULES

Default: []

A list of modules where Scrapy will look for spiders.

Example:

SPIDER_MODULES = ['mybot.spiders_prod', 'mybot.spiders_dev']

STATS_CLASS

Default: ’scrapy.statscol.MemoryStatsCollector’

The class to use for collecting stats, who must implement the Stats Collector API.

STATS_DUMP

Default: True

Dump the Scrapy stats (to the Scrapy log) once the spider finishes.

For more info see: Stats Collection.

STATSMAILER_RCPTS

Default: [] (empty list)

Send Scrapy stats after spiders finish scraping. See StatsMailer for more info.

156 Chapter 7. Reference

Scrapy Documentation, Release 0.18.4

TELNETCONSOLE_ENABLED

Default: True

A boolean which specifies if the telnet console will be enabled (provided its extension is also enabled).

TELNETCONSOLE_PORT

Default: [6023, 6073]

The port range to use for the telnet console. If set to None or 0, a dynamically assigned port is used. For more info
see Telnet Console.

TEMPLATES_DIR

Default: templates dir inside scrapy module

The directory where to look for templates when creating new projects with startproject command.

URLLENGTH_LIMIT

Default: 2083

Scope: contrib.spidermiddleware.urllength

The maximum URL length to allow for crawled URLs. For more information about the default value for this setting
see: http://www.boutell.com/newfaq/misc/urllength.html

USER_AGENT

Default: "Scrapy/VERSION (+http://scrapy.org)"

The default User-Agent to use when crawling, unless overridden.

7.3 Signals

Scrapy uses signals extensively to notify when certain events occur. You can catch some of those signals in your
Scrapy project (using an extension, for example) to perform additional tasks or extend Scrapy to add functionality not
provided out of the box.

Even though signals provide several arguments, the handlers that catch them don’t need to accept all of them - the
signal dispatching mechanism will only deliver the arguments that the handler receives.

You can connect to signals (or send your own) through the Signals API.

7.3.1 Deferred signal handlers

Some signals support returning Twisted deferreds from their handlers, see the Built-in signals reference below to know
which ones.

7.3. Signals 157

http://www.boutell.com/newfaq/misc/urllength.html
http://twistedmatrix.com/documents/current/core/howto/defer.html

Scrapy Documentation, Release 0.18.4

7.3.2 Built-in signals reference

Here’s the list of Scrapy built-in signals and their meaning.

engine_started

scrapy.signals.engine_started()
Sent when the Scrapy engine has started crawling.

This signal supports returning deferreds from their handlers.

Note: This signal may be fired after the spider_opened signal, depending on how the spider was started. So
don’t rely on this signal getting fired before spider_opened.

engine_stopped

scrapy.signals.engine_stopped()
Sent when the Scrapy engine is stopped (for example, when a crawling process has finished).

This signal supports returning deferreds from their handlers.

item_scraped

scrapy.signals.item_scraped(item, response, spider)
Sent when an item has been scraped, after it has passed all the Item Pipeline stages (without being dropped).

This signal supports returning deferreds from their handlers.

Parameters

• item (Item object) – the item scraped

• response (Response object) – the response from where the item was scraped

• spider (BaseSpider object) – the spider which scraped the item

item_dropped

scrapy.signals.item_dropped(item, spider, exception)
Sent after an item has been dropped from the Item Pipeline when some stage raised a DropItem exception.

This signal supports returning deferreds from their handlers.

Parameters

• item (Item object) – the item dropped from the Item Pipeline

• spider (BaseSpider object) – the spider which scraped the item

• exception (DropItem exception) – the exception (which must be a DropItem sub-
class) which caused the item to be dropped

158 Chapter 7. Reference

Scrapy Documentation, Release 0.18.4

spider_closed

scrapy.signals.spider_closed(spider, reason)
Sent after a spider has been closed. This can be used to release per-spider resources reserved on
spider_opened.

This signal supports returning deferreds from their handlers.

Parameters

• spider (BaseSpider object) – the spider which has been closed

• reason (str) – a string which describes the reason why the spider was closed. If it was
closed because the spider has completed scraping, the reason is ’finished’. Otherwise,
if the spider was manually closed by calling the close_spider engine method, then
the reason is the one passed in the reason argument of that method (which defaults to
’cancelled’). If the engine was shutdown (for example, by hitting Ctrl-C to stop it) the
reason will be ’shutdown’.

spider_opened

scrapy.signals.spider_opened(spider)
Sent after a spider has been opened for crawling. This is typically used to reserve per-spider resources, but can
be used for any task that needs to be performed when a spider is opened.

This signal supports returning deferreds from their handlers.

Parameters spider (BaseSpider object) – the spider which has been opened

spider_idle

scrapy.signals.spider_idle(spider)
Sent when a spider has gone idle, which means the spider has no further:

•requests waiting to be downloaded

•requests scheduled

•items being processed in the item pipeline

If the idle state persists after all handlers of this signal have finished, the engine starts closing the spider. After
the spider has finished closing, the spider_closed signal is sent.

You can, for example, schedule some requests in your spider_idle handler to prevent the spider from being
closed.

This signal does not support returning deferreds from their handlers.

Parameters spider (BaseSpider object) – the spider which has gone idle

spider_error

scrapy.signals.spider_error(failure, response, spider)
Sent when a spider callback generates an error (ie. raises an exception).

Parameters

• failure (Failure object) – the exception raised as a Twisted Failure object

7.3. Signals 159

http://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
http://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html

Scrapy Documentation, Release 0.18.4

• response (Response object) – the response being processed when the exception was
raised

• spider (BaseSpider object) – the spider which raised the exception

response_received

scrapy.signals.response_received(response, request, spider)
Sent when the engine receives a new Response from the downloader.

This signal does not support returning deferreds from their handlers.

Parameters

• response (Response object) – the response received

• request (Request object) – the request that generated the response

• spider (BaseSpider object) – the spider for which the response is intended

response_downloaded

scrapy.signals.response_downloaded(response, request, spider)
Sent by the downloader right after a HTTPResponse is downloaded.

This signal does not support returning deferreds from their handlers.

Parameters

• response (Response object) – the response downloaded

• request (Request object) – the request that generated the response

• spider (BaseSpider object) – the spider for which the response is intended

7.4 Exceptions

7.4.1 Built-in Exceptions reference

Here’s a list of all exceptions included in Scrapy and their usage.

DropItem

exception scrapy.exceptions.DropItem

The exception that must be raised by item pipeline stages to stop processing an Item. For more information see Item
Pipeline.

CloseSpider

exception scrapy.exceptions.CloseSpider(reason=’cancelled’)
This exception can be raised from a spider callback to request the spider to be closed/stopped. Supported
arguments:

Parameters reason (str) – the reason for closing

160 Chapter 7. Reference

Scrapy Documentation, Release 0.18.4

For example:

def parse_page(self, response):
if 'Bandwidth exceeded' in response.body:

raise CloseSpider('bandwidth_exceeded')

IgnoreRequest

exception scrapy.exceptions.IgnoreRequest

This exception can be raised by the Scheduler or any downloader middleware to indicate that the request should be
ignored.

NotConfigured

exception scrapy.exceptions.NotConfigured

This exception can be raised by some components to indicate that they will remain disabled. Those components
include:

• Extensions

• Item pipelines

• Downloader middlwares

• Spider middlewares

The exception must be raised in the component constructor.

NotSupported

exception scrapy.exceptions.NotSupported

This exception is raised to indicate an unsupported feature.

7.5 Item Exporters

Once you have scraped your Items, you often want to persist or export those items, to use the data in some other
application. That is, after all, the whole purpose of the scraping process.

For this purpose Scrapy provides a collection of Item Exporters for different output formats, such as XML, CSV or
JSON.

7.5.1 Using Item Exporters

If you are in a hurry, and just want to use an Item Exporter to output scraped data see the Feed exports. Otherwise, if
you want to know how Item Exporters work or need more custom functionality (not covered by the default exports),
continue reading below.

In order to use an Item Exporter, you must instantiate it with its required args. Each Item Exporter requires different
arguments, so check each exporter documentation to be sure, in Built-in Item Exporters reference. After you have
instantiated you exporter, you have to:

1. call the method start_exporting() in order to signal the beginning of the exporting process

7.5. Item Exporters 161

Scrapy Documentation, Release 0.18.4

2. call the export_item() method for each item you want to export

3. and finally call the finish_exporting() to signal the end of the exporting process

Here you can see an Item Pipeline which uses an Item Exporter to export scraped items to different files, one per
spider:

from scrapy import signals
from scrapy.contrib.exporter import XmlItemExporter

class XmlExportPipeline(object):

def __init__(self):
self.files = {}

@classmethod
def from_crawler(cls, crawler):

pipeline = cls()
crawler.signals.connect(pipeline.spider_opened, signals.spider_opened)
crawler.signals.connect(pipeline.spider_closed, signals.spider_closed)
return pipeline

def spider_opened(self, spider):
file = open('%s_products.xml' % spider.name, 'w+b')
self.files[spider] = file
self.exporter = XmlItemExporter(file)
self.exporter.start_exporting()

def spider_closed(self, spider):
self.exporter.finish_exporting()
file = self.files.pop(spider)
file.close()

def process_item(self, item, spider):
self.exporter.export_item(item)
return item

7.5.2 Serialization of item fields

By default, the field values are passed unmodified to the underlying serialization library, and the decision of how to
serialize them is delegated to each particular serialization library.

However, you can customize how each field value is serialized before it is passed to the serialization library.

There are two ways to customize how a field will be serialized, which are described next.

1. Declaring a serializer in the field

You can declare a serializer in the field metadata. The serializer must be a callable which receives a value and returns
its serialized form.

Example:

from scrapy.item import Item, Field

def serialize_price(value):
return '$ %s' % str(value)

162 Chapter 7. Reference

Scrapy Documentation, Release 0.18.4

class Product(Item):
name = Field()
price = Field(serializer=serialize_price)

2. Overriding the serialize_field() method

You can also override the serialize() method to customize how your field value will be exported.

Make sure you call the base class serialize() method after your custom code.

Example:

from scrapy.contrib.exporter import XmlItemExporter

class ProductXmlExporter(XmlItemExporter):

def serialize_field(self, field, name, value):
if field == 'price':

return '$ %s' % str(value)
return super(Product, self).serialize_field(field, name, value)

7.5.3 Built-in Item Exporters reference

Here is a list of the Item Exporters bundled with Scrapy. Some of them contain output examples, which assume you’re
exporting these two items:

Item(name='Color TV', price='1200')
Item(name='DVD player', price='200')

BaseItemExporter

class scrapy.contrib.exporter.BaseItemExporter(fields_to_export=None, ex-
port_empty_fields=False, encoding=’utf-
8’)

This is the (abstract) base class for all Item Exporters. It provides support for common features used by all
(concrete) Item Exporters, such as defining what fields to export, whether to export empty fields, or which
encoding to use.

These features can be configured through the constructor arguments which populate their respective instance
attributes: fields_to_export, export_empty_fields, encoding.

export_item(item)
Exports the given item. This method must be implemented in subclasses.

serialize_field(field, name, value)
Return the serialized value for the given field. You can override this method (in your custom Item Ex-
porters) if you want to control how a particular field or value will be serialized/exported.

By default, this method looks for a serializer declared in the item field and returns the result of applying
that serializer to the value. If no serializer is found, it returns the value unchanged except for unicode
values which are encoded to str using the encoding declared in the encoding attribute.

Parameters

• field (Field object) – the field being serialized

• name (str) – the name of the field being serialized

7.5. Item Exporters 163

Scrapy Documentation, Release 0.18.4

• value – the value being serialized

start_exporting()
Signal the beginning of the exporting process. Some exporters may use this to generate some required
header (for example, the XmlItemExporter). You must call this method before exporting any items.

finish_exporting()
Signal the end of the exporting process. Some exporters may use this to generate some required footer (for
example, the XmlItemExporter). You must always call this method after you have no more items to
export.

fields_to_export
A list with the name of the fields that will be exported, or None if you want to export all fields. Defaults to
None.

Some exporters (like CsvItemExporter) respect the order of the fields defined in this attribute.

export_empty_fields
Whether to include empty/unpopulated item fields in the exported data. Defaults to False. Some ex-
porters (like CsvItemExporter) ignore this attribute and always export all empty fields.

encoding
The encoding that will be used to encode unicode values. This only affects unicode values (which are
always serialized to str using this encoding). Other value types are passed unchanged to the specific
serialization library.

XmlItemExporter

class scrapy.contrib.exporter.XmlItemExporter(file, item_element=’item’,
root_element=’items’, **kwargs)

Exports Items in XML format to the specified file object.

Parameters

• file – the file-like object to use for exporting the data.

• root_element (str) – The name of root element in the exported XML.

• item_element (str) – The name of each item element in the exported XML.

The additional keyword arguments of this constructor are passed to the BaseItemExporter constructor.

A typical output of this exporter would be:

<?xml version="1.0" encoding="utf-8"?>
<items>
<item>

<name>Color TV</name>
<price>1200</price>

</item>
<item>

<name>DVD player</name>
<price>200</price>

</item>
</items>

Unless overridden in the serialize_field() method, multi-valued fields are exported by serializing each
value inside a <value> element. This is for convenience, as multi-valued fields are very common.

For example, the item:

164 Chapter 7. Reference

Scrapy Documentation, Release 0.18.4

Item(name=['John', 'Doe'], age='23')

Would be serialized as:

<?xml version="1.0" encoding="utf-8"?>
<items>
<item>

<name>
<value>John</value>
<value>Doe</value>

</name>
<age>23</age>

</item>
</items>

CsvItemExporter

class scrapy.contrib.exporter.CsvItemExporter(file, include_headers_line=True,
join_multivalued=’, ‘, **kwargs)

Exports Items in CSV format to the given file-like object. If the fields_to_export attribute is set, it will
be used to define the CSV columns and their order. The export_empty_fields attribute has no effect on
this exporter.

Parameters

• file – the file-like object to use for exporting the data.

• include_headers_line (str) – If enabled, makes the exporter output a header line
with the field names taken from BaseItemExporter.fields_to_export or the
first exported item fields.

• join_multivalued – The char (or chars) that will be used for joining multi-valued
fields, if found.

The additional keyword arguments of this constructor are passed to the BaseItemExporter constructor,
and the leftover arguments to the csv.writer constructor, so you can use any csv.writer constructor argument to
customize this exporter.

A typical output of this exporter would be:

product,price
Color TV,1200
DVD player,200

PickleItemExporter

class scrapy.contrib.exporter.PickleItemExporter(file, protocol=0, **kwargs)
Exports Items in pickle format to the given file-like object.

Parameters

• file – the file-like object to use for exporting the data.

• protocol (int) – The pickle protocol to use.

For more information, refer to the pickle module documentation.

The additional keyword arguments of this constructor are passed to the BaseItemExporter constructor.

Pickle isn’t a human readable format, so no output examples are provided.

7.5. Item Exporters 165

http://docs.python.org/library/csv.html#csv.writer
http://docs.python.org/library/pickle.html

Scrapy Documentation, Release 0.18.4

PprintItemExporter

class scrapy.contrib.exporter.PprintItemExporter(file, **kwargs)
Exports Items in pretty print format to the specified file object.

Parameters file – the file-like object to use for exporting the data.

The additional keyword arguments of this constructor are passed to the BaseItemExporter constructor.

A typical output of this exporter would be:

{'name': 'Color TV', 'price': '1200'}
{'name': 'DVD player', 'price': '200'}

Longer lines (when present) are pretty-formatted.

JsonItemExporter

class scrapy.contrib.exporter.JsonItemExporter(file, **kwargs)
Exports Items in JSON format to the specified file-like object, writing all objects as a list of objects. The addi-
tional constructor arguments are passed to the BaseItemExporter constructor, and the leftover arguments
to the JSONEncoder constructor, so you can use any JSONEncoder constructor argument to customize this
exporter.

Parameters file – the file-like object to use for exporting the data.

A typical output of this exporter would be:

[{"name": "Color TV", "price": "1200"},
{"name": "DVD player", "price": "200"}]

Warning: JSON is very simple and flexible serialization format, but it doesn’t scale well for large amounts
of data since incremental (aka. stream-mode) parsing is not well supported (if at all) among JSON parsers (on
any language), and most of them just parse the entire object in memory. If you want the power and simplicity
of JSON with a more stream-friendly format, consider using JsonLinesItemExporter instead, or
splitting the output in multiple chunks.

JsonLinesItemExporter

class scrapy.contrib.exporter.JsonLinesItemExporter(file, **kwargs)
Exports Items in JSON format to the specified file-like object, writing one JSON-encoded item per line. The
additional constructor arguments are passed to the BaseItemExporter constructor, and the leftover argu-
ments to the JSONEncoder constructor, so you can use any JSONEncoder constructor argument to customize
this exporter.

Parameters file – the file-like object to use for exporting the data.

A typical output of this exporter would be:

{"name": "Color TV", "price": "1200"}
{"name": "DVD player", "price": "200"}

Unlike the one produced by JsonItemExporter, the format produced by this exporter is well suited for
serializing large amounts of data.

Command line tool Learn about the command-line tool and see all available commands.

Requests and Responses Understand the classes used to represent HTTP requests and responses.

166 Chapter 7. Reference

http://docs.python.org/library/json.html#json.JSONEncoder
http://docs.python.org/library/json.html#json.JSONEncoder
http://docs.python.org/library/json.html#json.JSONEncoder
http://docs.python.org/library/json.html#json.JSONEncoder

Scrapy Documentation, Release 0.18.4

Settings Learn how to configure Scrapy and see all available settings.

Signals See all available signals and how to work with them.

Exceptions See all available exceptions and their meaning.

Item Exporters Quickly export your scraped items to a file (XML, CSV, etc).

7.5. Item Exporters 167

Scrapy Documentation, Release 0.18.4

168 Chapter 7. Reference

CHAPTER 8

All the rest

8.1 Release notes

8.1.1 0.18.4 (released 2013-10-10)

• IPython refuses to update the namespace. fix #396 (commit 3d32c4f)

• Fix AlreadyCalledError replacing a request in shell command. closes #407 (commit b1d8919)

• Fix start_requests lazyness and early hangs (commit 89faf52)

8.1.2 0.18.3 (released 2013-10-03)

• fix regression on lazy evaluation of start requests (commit 12693a5)

• forms: do not submit reset inputs (commit e429f63)

• increase unittest timeouts to decrease travis false positive failures (commit 912202e)

• backport master fixes to json exporter (commit cfc2d46)

• Fix permission and set umask before generating sdist tarball (commit 06149e0)

8.1.3 0.18.2 (released 2013-09-03)

• Backport scrapy check command fixes and backward compatible multi crawler process(issue 339)

8.1.4 0.18.1 (released 2013-08-27)

• remove extra import added by cherry picked changes (commit d20304e)

• fix crawling tests under twisted pre 11.0.0 (commit 1994f38)

• py26 can not format zero length fields {} (commit abf756f)

• test PotentiaDataLoss errors on unbound responses (commit b15470d)

• Treat responses without content-length or Transfer-Encoding as good responses (commit c4bf324)

• do no include ResponseFailed if http11 handler is not enabled (commit 6cbe684)

• New HTTP client wraps connection losts in ResponseFailed exception. fix #373 (commit 1a20bba)

169

https://github.com/scrapy/scrapy/commit/3d32c4f
https://github.com/scrapy/scrapy/commit/b1d8919
https://github.com/scrapy/scrapy/commit/89faf52
https://github.com/scrapy/scrapy/commit/12693a5
https://github.com/scrapy/scrapy/commit/e429f63
https://github.com/scrapy/scrapy/commit/912202e
https://github.com/scrapy/scrapy/commit/cfc2d46
https://github.com/scrapy/scrapy/commit/06149e0
https://github.com/scrapy/scrapy/issues/339
https://github.com/scrapy/scrapy/commit/d20304e
https://github.com/scrapy/scrapy/commit/1994f38
https://github.com/scrapy/scrapy/commit/abf756f
https://github.com/scrapy/scrapy/commit/b15470d
https://github.com/scrapy/scrapy/commit/c4bf324
https://github.com/scrapy/scrapy/commit/6cbe684
https://github.com/scrapy/scrapy/commit/1a20bba

Scrapy Documentation, Release 0.18.4

• limit travis-ci build matrix (commit 3b01bb8)

• Merge pull request #375 from peterarenot/patch-1 (commit fa766d7)

• Fixed so it refers to the correct folder (commit 3283809)

• added quantal & raring to support ubuntu releases (commit 1411923)

• fix retry middleware which didn’t retry certain connection errors after the upgrade to http1 client, closes GH-373
(commit bb35ed0)

• fix XmlItemExporter in Python 2.7.4 and 2.7.5 (commit de3e451)

• minor updates to 0.18 release notes (commit c45e5f1)

• fix contributters list format (commit 0b60031)

8.1.5 0.18.0 (released 2013-08-09)

• Lot of improvements to testsuite run using Tox, including a way to test on pypi

• Handle GET parameters for AJAX crawleable urls (commit 3fe2a32)

• Use lxml recover option to parse sitemaps (issue 347)

• Bugfix cookie merging by hostname and not by netloc (issue 352)

• Support disabling HttpCompressionMiddleware using a flag setting (issue 359)

• Support xml namespaces using iternodes parser in XMLFeedSpider (issue 12)

• Support dont_cache request meta flag (issue 19)

• Bugfix scrapy.utils.gz.gunzip broken by changes in python 2.7.4 (commit 4dc76e)

• Bugfix url encoding on SgmlLinkExtractor (issue 24)

• Bugfix TakeFirst processor shouldn’t discard zero (0) value (issue 59)

• Support nested items in xml exporter (issue 66)

• Improve cookies handling performance (issue 77)

• Log dupe filtered requests once (issue 105)

• Split redirection middleware into status and meta based middlewares (issue 78)

• Use HTTP1.1 as default downloader handler (issue 109 and issue 318)

• Support xpath form selection on FormRequest.from_response (issue 185)

• Bugfix unicode decoding error on SgmlLinkExtractor (issue 199)

• Bugfix signal dispatching on pypi interpreter (issue 205)

• Improve request delay and concurrency handling (issue 206)

• Add RFC2616 cache policy to HttpCacheMiddleware (issue 212)

• Allow customization of messages logged by engine (issue 214)

• Multiples improvements to DjangoItem (issue 217, issue 218, issue 221)

• Extend Scrapy commands using setuptools entry points (issue 260)

• Allow spider allowed_domains value to be set/tuple (issue 261)

• Support settings.getdict (issue 269)

170 Chapter 8. All the rest

https://github.com/scrapy/scrapy/commit/3b01bb8
https://github.com/scrapy/scrapy/commit/fa766d7
https://github.com/scrapy/scrapy/commit/3283809
https://github.com/scrapy/scrapy/commit/1411923
https://github.com/scrapy/scrapy/commit/bb35ed0
https://github.com/scrapy/scrapy/commit/de3e451
https://github.com/scrapy/scrapy/commit/c45e5f1
https://github.com/scrapy/scrapy/commit/0b60031
https://github.com/scrapy/scrapy/commit/3fe2a32
https://github.com/scrapy/scrapy/issues/347
https://github.com/scrapy/scrapy/issues/352
https://github.com/scrapy/scrapy/issues/359
https://github.com/scrapy/scrapy/issues/12
https://github.com/scrapy/scrapy/issues/19
https://github.com/scrapy/scrapy/commit/4dc76e
https://github.com/scrapy/scrapy/issues/24
https://github.com/scrapy/scrapy/issues/59
https://github.com/scrapy/scrapy/issues/66
https://github.com/scrapy/scrapy/issues/77
https://github.com/scrapy/scrapy/issues/105
https://github.com/scrapy/scrapy/issues/78
https://github.com/scrapy/scrapy/issues/109
https://github.com/scrapy/scrapy/issues/318
https://github.com/scrapy/scrapy/issues/185
https://github.com/scrapy/scrapy/issues/199
https://github.com/scrapy/scrapy/issues/205
https://github.com/scrapy/scrapy/issues/206
https://github.com/scrapy/scrapy/issues/212
https://github.com/scrapy/scrapy/issues/214
https://github.com/scrapy/scrapy/issues/217
https://github.com/scrapy/scrapy/issues/218
https://github.com/scrapy/scrapy/issues/221
https://github.com/scrapy/scrapy/issues/260
https://github.com/scrapy/scrapy/issues/261
https://github.com/scrapy/scrapy/issues/269

Scrapy Documentation, Release 0.18.4

• Simplify internal scrapy.core.scraper slot handling (issue 271)

• Added Item.copy (issue 290)

• Collect idle downloader slots (issue 297)

• Add ftp:// scheme downloader handler (issue 329)

• Added downloader benchmark webserver and spider tools Benchmarking

• Moved persistent (on disk) queues to a separate project (queuelib) which scrapy now depends on

• Add scrapy commands using external libraries (issue 260)

• Added --pdb option to scrapy command line tool

• Added XPathSelector.remove_namespaces() which allows to remove all namespaces from XML
documents for convenience (to work with namespace-less XPaths). Documented in Selectors.

• Several improvements to spider contracts

• New default middleware named MetaRefreshMiddldeware that handles meta-refresh html tag redirections,

• MetaRefreshMiddldeware and RedirectMiddleware have different priorities to address #62

• added from_crawler method to spiders

• added system tests with mock server

• more improvements to Mac OS compatibility (thanks Alex Cepoi)

• several more cleanups to singletons and multi-spider support (thanks Nicolas Ramirez)

• support custom download slots

• added –spider option to “shell” command.

• log overridden settings when scrapy starts

Thanks to everyone who contribute to this release. Here is a list of contributors sorted by number of commits:

130 Pablo Hoffman <pablo@...>
97 Daniel Graña <dangra@...>
20 Nicolás Ramírez <nramirez.uy@...>
13 Mikhail Korobov <kmike84@...>
12 Pedro Faustino <pedrobandim@...>
11 Steven Almeroth <sroth77@...>
5 Rolando Espinoza La fuente <darkrho@...>
4 Michal Danilak <mimino.coder@...>
4 Alex Cepoi <alex.cepoi@...>
4 Alexandr N Zamaraev (aka tonal) <tonal@...>
3 paul <paul.tremberth@...>
3 Martin Olveyra <molveyra@...>
3 Jordi Llonch <llonchj@...>
3 arijitchakraborty <myself.arijit@...>
2 Shane Evans <shane.evans@...>
2 joehillen <joehillen@...>
2 Hart <HartSimha@...>
2 Dan <ellisd23@...>
1 Zuhao Wan <wanzuhao@...>
1 whodatninja <blake@...>
1 vkrest <v.krestiannykov@...>
1 tpeng <pengtaoo@...>
1 Tom Mortimer-Jones <tom@...>
1 Rocio Aramberri <roschegel@...>
1 Pedro <pedro@...>

8.1. Release notes 171

https://github.com/scrapy/scrapy/issues/271
https://github.com/scrapy/scrapy/issues/290
https://github.com/scrapy/scrapy/issues/297
https://github.com/scrapy/scrapy/issues/329
https://github.com/scrapy/queuelib
https://github.com/scrapy/scrapy/issues/260

Scrapy Documentation, Release 0.18.4

1 notsobad <wangxiaohugg@...>
1 Natan L <kuyanatan.nlao@...>
1 Mark Grey <mark.grey@...>
1 Luan <luanpab@...>
1 Libor Nenadál <libor.nenadal@...>
1 Juan M Uys <opyate@...>
1 Jonas Brunsgaard <jonas.brunsgaard@...>
1 Ilya Baryshev <baryshev@...>
1 Hasnain Lakhani <m.hasnain.lakhani@...>
1 Emanuel Schorsch <emschorsch@...>
1 Chris Tilden <chris.tilden@...>
1 Capi Etheriel <barraponto@...>
1 cacovsky <amarquesferraz@...>
1 Berend Iwema <berend@...>

8.1.6 0.16.5 (released 2013-05-30)

• obey request method when scrapy deploy is redirected to a new endpoint (commit 8c4fcee)

• fix inaccurate downloader middleware documentation. refs #280 (commit 40667cb)

• doc: remove links to diveintopython.org, which is no longer available. closes #246 (commit bd58bfa)

• Find form nodes in invalid html5 documents (commit e3d6945)

• Fix typo labeling attrs type bool instead of list (commit a274276)

8.1.7 0.16.4 (released 2013-01-23)

• fixes spelling errors in documentation (commit 6d2b3aa)

• add doc about disabling an extension. refs #132 (commit c90de33)

• Fixed error message formatting. log.err() doesn’t support cool formatting and when error occured, the message
was: “ERROR: Error processing %(item)s” (commit c16150c)

• lint and improve images pipeline error logging (commit 56b45fc)

• fixed doc typos (commit 243be84)

• add documentation topics: Broad Crawls & Common Practies (commit 1fbb715)

• fix bug in scrapy parse command when spider is not specified explicitly. closes #209 (commit c72e682)

• Update docs/topics/commands.rst (commit 28eac7a)

8.1.8 0.16.3 (released 2012-12-07)

• Remove concurrency limitation when using download delays and still ensure inter-request delays are enforced
(commit 487b9b5)

• add error details when image pipeline fails (commit 8232569)

• improve mac os compatibility (commit 8dcf8aa)

• setup.py: use README.rst to populate long_description (commit 7b5310d)

• doc: removed obsolete references to ClientForm (commit 80f9bb6)

• correct docs for default storage backend (commit 2aa491b)

172 Chapter 8. All the rest

https://github.com/scrapy/scrapy/commit/8c4fcee
https://github.com/scrapy/scrapy/commit/40667cb
https://github.com/scrapy/scrapy/commit/bd58bfa
https://github.com/scrapy/scrapy/commit/e3d6945
https://github.com/scrapy/scrapy/commit/a274276
https://github.com/scrapy/scrapy/commit/6d2b3aa
https://github.com/scrapy/scrapy/commit/c90de33
https://github.com/scrapy/scrapy/commit/c16150c
https://github.com/scrapy/scrapy/commit/56b45fc
https://github.com/scrapy/scrapy/commit/243be84
https://github.com/scrapy/scrapy/commit/1fbb715
https://github.com/scrapy/scrapy/commit/c72e682
https://github.com/scrapy/scrapy/commit/28eac7a
https://github.com/scrapy/scrapy/commit/487b9b5
https://github.com/scrapy/scrapy/commit/8232569
https://github.com/scrapy/scrapy/commit/8dcf8aa
https://github.com/scrapy/scrapy/commit/7b5310d
https://github.com/scrapy/scrapy/commit/80f9bb6
https://github.com/scrapy/scrapy/commit/2aa491b

Scrapy Documentation, Release 0.18.4

• doc: removed broken proxyhub link from FAQ (commit bdf61c4)

• Fixed docs typo in SpiderOpenCloseLogging example (commit 7184094)

8.1.9 0.16.2 (released 2012-11-09)

• scrapy contracts: python2.6 compat (commit a4a9199)

• scrapy contracts verbose option (commit ec41673)

• proper unittest-like output for scrapy contracts (commit 86635e4)

• added open_in_browser to debugging doc (commit c9b690d)

• removed reference to global scrapy stats from settings doc (commit dd55067)

• Fix SpiderState bug in Windows platforms (commit 58998f4)

8.1.10 0.16.1 (released 2012-10-26)

• fixed LogStats extension, which got broken after a wrong merge before the 0.16 release (commit 8c780fd)

• better backwards compatibility for scrapy.conf.settings (commit 3403089)

• extended documentation on how to access crawler stats from extensions (commit c4da0b5)

• removed .hgtags (no longer needed now that scrapy uses git) (commit d52c188)

• fix dashes under rst headers (commit fa4f7f9)

• set release date for 0.16.0 in news (commit e292246)

8.1.11 0.16.0 (released 2012-10-18)

Scrapy changes:

• added Spiders Contracts, a mechanism for testing spiders in a formal/reproducible way

• added options -o and -t to the runspider command

• documented AutoThrottle extension and added to extensions installed by default. You still need to enable it with
AUTOTHROTTLE_ENABLED

• major Stats Collection refactoring: removed separation of global/per-spider stats, removed stats-related signals
(stats_spider_opened, etc). Stats are much simpler now, backwards compatibility is kept on the Stats
Collector API and signals.

• added process_start_requests() method to spider middlewares

• dropped Signals singleton. Signals should now be accesed through the Crawler.signals attribute. See the signals
documentation for more info.

• dropped Signals singleton. Signals should now be accesed through the Crawler.signals attribute. See the signals
documentation for more info.

• dropped Stats Collector singleton. Stats can now be accessed through the Crawler.stats attribute. See the stats
collection documentation for more info.

• documented Core API

• lxml is now the default selectors backend instead of libxml2

8.1. Release notes 173

https://github.com/scrapy/scrapy/commit/bdf61c4
https://github.com/scrapy/scrapy/commit/7184094
https://github.com/scrapy/scrapy/commit/a4a9199
https://github.com/scrapy/scrapy/commit/ec41673
https://github.com/scrapy/scrapy/commit/86635e4
https://github.com/scrapy/scrapy/commit/c9b690d
https://github.com/scrapy/scrapy/commit/dd55067
https://github.com/scrapy/scrapy/commit/58998f4
https://github.com/scrapy/scrapy/commit/8c780fd
https://github.com/scrapy/scrapy/commit/3403089
https://github.com/scrapy/scrapy/commit/c4da0b5
https://github.com/scrapy/scrapy/commit/d52c188
https://github.com/scrapy/scrapy/commit/fa4f7f9
https://github.com/scrapy/scrapy/commit/e292246

Scrapy Documentation, Release 0.18.4

• ported FormRequest.from_response() to use lxml instead of ClientForm

• removed modules: scrapy.xlib.BeautifulSoup and scrapy.xlib.ClientForm

• SitemapSpider: added support for sitemap urls ending in .xml and .xml.gz, even if they advertise a wrong content
type (commit 10ed28b)

• StackTraceDump extension: also dump trackref live references (commit fe2ce93)

• nested items now fully supported in JSON and JSONLines exporters

• added cookiejar Request meta key to support multiple cookie sessions per spider

• decoupled encoding detection code to w3lib.encoding, and ported Scrapy code to use that mdule

• dropped support for Python 2.5. See http://blog.scrapy.org/scrapy-dropping-support-for-python-25

• dropped support for Twisted 2.5

• added REFERER_ENABLED setting, to control referer middleware

• changed default user agent to: Scrapy/VERSION (+http://scrapy.org)

• removed (undocumented) HTMLImageLinkExtractor class from scrapy.contrib.linkextractors.image

• removed per-spider settings (to be replaced by instantiating multiple crawler objects)

• USER_AGENT spider attribute will no longer work, use user_agent attribute instead

• DOWNLOAD_TIMEOUT spider attribute will no longer work, use download_timeout attribute instead

• removed ENCODING_ALIASES setting, as encoding auto-detection has been moved to the w3lib library

• promoted DjangoItem to main contrib

• LogFormatter method now return dicts(instead of strings) to support lazy formatting (issue 164, commit
dcef7b0)

• downloader handlers (DOWNLOAD_HANDLERS setting) now receive settings as the first argument of the con-
structor

• replaced memory usage acounting with (more portable) resource module, removed scrapy.utils.memory
module

• removed signal: scrapy.mail.mail_sent

• removed TRACK_REFS setting, now trackrefs is always enabled

• DBM is now the default storage backend for HTTP cache middleware

• number of log messages (per level) are now tracked through Scrapy stats (stat name: log_count/LEVEL)

• number received responses are now tracked through Scrapy stats (stat name: response_received_count)

• removed scrapy.log.started attribute

8.1.12 0.14.4

• added precise to supported ubuntu distros (commit b7e46df)

• fixed bug in json-rpc webservice reported in https://groups.google.com/d/topic/scrapy-
users/qgVBmFybNAQ/discussion. also removed no longer supported ‘run’ command from extras/scrapy-ws.py
(commit 340fbdb)

• meta tag attributes for content-type http equiv can be in any order. #123 (commit 0cb68af)

• replace “import Image” by more standard “from PIL import Image”. closes #88 (commit 4d17048)

174 Chapter 8. All the rest

http://lxml.de/
http://wwwsearch.sourceforge.net/old/ClientForm/
https://github.com/scrapy/scrapy/commit/10ed28b
https://github.com/scrapy/scrapy/commit/fe2ce93
https://github.com/scrapy/w3lib/blob/master/w3lib/encoding.py
http://blog.scrapy.org/scrapy-dropping-support-for-python-25
http://https://github.com/scrapy/w3lib
https://github.com/scrapy/scrapy/issues/164
https://github.com/scrapy/scrapy/commit/dcef7b0
https://github.com/scrapy/scrapy/commit/dcef7b0
http://docs.python.org/library/resource.html
https://github.com/scrapy/scrapy/commit/b7e46df
https://groups.google.com/d/topic/scrapy-users/qgVBmFybNAQ/discussion
https://groups.google.com/d/topic/scrapy-users/qgVBmFybNAQ/discussion
https://github.com/scrapy/scrapy/commit/340fbdb
https://github.com/scrapy/scrapy/commit/0cb68af
https://github.com/scrapy/scrapy/commit/4d17048

Scrapy Documentation, Release 0.18.4

• return trial status as bin/runtests.sh exit value. #118 (commit b7b2e7f)

8.1.13 0.14.3

• forgot to include pydispatch license. #118 (commit fd85f9c)

• include egg files used by testsuite in source distribution. #118 (commit c897793)

• update docstring in project template to avoid confusion with genspider command, which may be considered as
an advanced feature. refs #107 (commit 2548dcc)

• added note to docs/topics/firebug.rst about google directory being shut down (commit 668e352)

• dont discard slot when empty, just save in another dict in order to recycle if needed again. (commit 8e9f607)

• do not fail handling unicode xpaths in libxml2 backed selectors (commit b830e95)

• fixed minor mistake in Request objects documentation (commit bf3c9ee)

• fixed minor defect in link extractors documentation (commit ba14f38)

• removed some obsolete remaining code related to sqlite support in scrapy (commit 0665175)

8.1.14 0.14.2

• move buffer pointing to start of file before computing checksum. refs #92 (commit 6a5bef2)

• Compute image checksum before persisting images. closes #92 (commit 9817df1)

• remove leaking references in cached failures (commit 673a120)

• fixed bug in MemoryUsage extension: get_engine_status() takes exactly 1 argument (0 given) (commit 11133e9)

• fixed struct.error on http compression middleware. closes #87 (commit 1423140)

• ajax crawling wasn’t expanding for unicode urls (commit 0de3fb4)

• Catch start_requests iterator errors. refs #83 (commit 454a21d)

• Speed-up libxml2 XPathSelector (commit 2fbd662)

• updated versioning doc according to recent changes (commit 0a070f5)

• scrapyd: fixed documentation link (commit 2b4e4c3)

• extras/makedeb.py: no longer obtaining version from git (commit caffe0e)

8.1.15 0.14.1

• extras/makedeb.py: no longer obtaining version from git (commit caffe0e)

• bumped version to 0.14.1 (commit 6cb9e1c)

• fixed reference to tutorial directory (commit 4b86bd6)

• doc: removed duplicated callback argument from Request.replace() (commit 1aeccdd)

• fixed formatting of scrapyd doc (commit 8bf19e6)

• Dump stacks for all running threads and fix engine status dumped by StackTraceDump extension (commit
14a8e6e)

• added comment about why we disable ssl on boto images upload (commit 5223575)

8.1. Release notes 175

https://github.com/scrapy/scrapy/commit/b7b2e7f
https://github.com/scrapy/scrapy/commit/fd85f9c
https://github.com/scrapy/scrapy/commit/c897793
https://github.com/scrapy/scrapy/commit/2548dcc
https://github.com/scrapy/scrapy/commit/668e352
https://github.com/scrapy/scrapy/commit/8e9f607
https://github.com/scrapy/scrapy/commit/b830e95
https://github.com/scrapy/scrapy/commit/bf3c9ee
https://github.com/scrapy/scrapy/commit/ba14f38
https://github.com/scrapy/scrapy/commit/0665175
https://github.com/scrapy/scrapy/commit/6a5bef2
https://github.com/scrapy/scrapy/commit/9817df1
https://github.com/scrapy/scrapy/commit/673a120
https://github.com/scrapy/scrapy/commit/11133e9
https://github.com/scrapy/scrapy/commit/1423140
https://github.com/scrapy/scrapy/commit/0de3fb4
https://github.com/scrapy/scrapy/commit/454a21d
https://github.com/scrapy/scrapy/commit/2fbd662
https://github.com/scrapy/scrapy/commit/0a070f5
https://github.com/scrapy/scrapy/commit/2b4e4c3
https://github.com/scrapy/scrapy/commit/caffe0e
https://github.com/scrapy/scrapy/commit/caffe0e
https://github.com/scrapy/scrapy/commit/6cb9e1c
https://github.com/scrapy/scrapy/commit/4b86bd6
https://github.com/scrapy/scrapy/commit/1aeccdd
https://github.com/scrapy/scrapy/commit/8bf19e6
https://github.com/scrapy/scrapy/commit/14a8e6e
https://github.com/scrapy/scrapy/commit/14a8e6e
https://github.com/scrapy/scrapy/commit/5223575

Scrapy Documentation, Release 0.18.4

• SSL handshaking hangs when doing too many parallel connections to S3 (commit 63d583d)

• change tutorial to follow changes on dmoz site (commit bcb3198)

• Avoid _disconnectedDeferred AttributeError exception in Twisted>=11.1.0 (commit 98f3f87)

• allow spider to set autothrottle max concurrency (commit 175a4b5)

8.1.16 0.14

New features and settings

• Support for AJAX crawleable urls

• New persistent scheduler that stores requests on disk, allowing to suspend and resume crawls (r2737)

• added -o option to scrapy crawl, a shortcut for dumping scraped items into a file (or standard output using
-)

• Added support for passing custom settings to Scrapyd schedule.json api (r2779, r2783)

• New ChunkedTransferMiddleware (enabled by default) to support chunked transfer encoding (r2769)

• Add boto 2.0 support for S3 downloader handler (r2763)

• Added marshal to formats supported by feed exports (r2744)

• In request errbacks, offending requests are now received in failure.request attribute (r2738)

• Big downloader refactoring to support per domain/ip concurrency limits (r2732)

– CONCURRENT_REQUESTS_PER_SPIDER setting has been deprecated and replaced by:

* CONCURRENT_REQUESTS, CONCURRENT_REQUESTS_PER_DOMAIN ,
CONCURRENT_REQUESTS_PER_IP

– check the documentation for more details

• Added builtin caching DNS resolver (r2728)

• Moved Amazon AWS-related components/extensions (SQS spider queue, SimpleDB stats collector) to a sepa-
rate project: [scaws](https://github.com/scrapinghub/scaws) (r2706, r2714)

• Moved spider queues to scrapyd: scrapy.spiderqueue -> scrapyd.spiderqueue (r2708)

• Moved sqlite utils to scrapyd: scrapy.utils.sqlite -> scrapyd.sqlite (r2781)

• Real support for returning iterators on start_requests() method. The iterator is now consumed during the crawl
when the spider is getting idle (r2704)

• Added REDIRECT_ENABLED setting to quickly enable/disable the redirect middleware (r2697)

• Added RETRY_ENABLED setting to quickly enable/disable the retry middleware (r2694)

• Added CloseSpider exception to manually close spiders (r2691)

• Improved encoding detection by adding support for HTML5 meta charset declaration (r2690)

• Refactored close spider behavior to wait for all downloads to finish and be processed by spiders, before closing
the spider (r2688)

• Added SitemapSpider (see documentation in Spiders page) (r2658)

• Added LogStats extension for periodically logging basic stats (like crawled pages and scraped items) (r2657)

176 Chapter 8. All the rest

https://github.com/scrapy/scrapy/commit/63d583d
https://github.com/scrapy/scrapy/commit/bcb3198
https://github.com/scrapy/scrapy/commit/98f3f87
https://github.com/scrapy/scrapy/commit/175a4b5
http://code.google.com/web/ajaxcrawling/docs/getting-started.html
http://hg.scrapy.org/scrapy/changeset/2737
http://hg.scrapy.org/scrapy/changeset/2779
http://hg.scrapy.org/scrapy/changeset/2783
http://en.wikipedia.org/wiki/Chunked_transfer_encoding
http://hg.scrapy.org/scrapy/changeset/2769
http://hg.scrapy.org/scrapy/changeset/2763
http://docs.python.org/library/marshal.html
http://hg.scrapy.org/scrapy/changeset/2744
http://hg.scrapy.org/scrapy/changeset/2738
http://hg.scrapy.org/scrapy/changeset/2732
http://hg.scrapy.org/scrapy/changeset/2728
https://github.com/scrapinghub/scaws
http://hg.scrapy.org/scrapy/changeset/2706
http://hg.scrapy.org/scrapy/changeset/2714
http://hg.scrapy.org/scrapy/changeset/2708
http://hg.scrapy.org/scrapy/changeset/2781
http://hg.scrapy.org/scrapy/changeset/2704
http://hg.scrapy.org/scrapy/changeset/2697
http://hg.scrapy.org/scrapy/changeset/2694
http://hg.scrapy.org/scrapy/changeset/2691
http://hg.scrapy.org/scrapy/changeset/2690
http://hg.scrapy.org/scrapy/changeset/2688
http://hg.scrapy.org/scrapy/changeset/2658
http://hg.scrapy.org/scrapy/changeset/2657

Scrapy Documentation, Release 0.18.4

• Make handling of gzipped responses more robust (#319, r2643). Now Scrapy will try and decompress as much
as possible from a gzipped response, instead of failing with an IOError.

• Simplified !MemoryDebugger extension to use stats for dumping memory debugging info (r2639)

• Added new command to edit spiders: scrapy edit (r2636) and -e flag to genspider command that uses it
(r2653)

• Changed default representation of items to pretty-printed dicts. (r2631). This improves default logging by
making log more readable in the default case, for both Scraped and Dropped lines.

• Added spider_error signal (r2628)

• Added COOKIES_ENABLED setting (r2625)

• Stats are now dumped to Scrapy log (default value of STATS_DUMP setting has been changed to True). This is
to make Scrapy users more aware of Scrapy stats and the data that is collected there.

• Added support for dynamically adjusting download delay and maximum concurrent requests (r2599)

• Added new DBM HTTP cache storage backend (r2576)

• Added listjobs.json API to Scrapyd (r2571)

• CsvItemExporter: added join_multivalued parameter (r2578)

• Added namespace support to xmliter_lxml (r2552)

• Improved cookies middleware by making COOKIES_DEBUG nicer and documenting it (r2579)

• Several improvements to Scrapyd and Link extractors

Code rearranged and removed

• Merged item passed and item scraped concepts, as they have often proved confusing in the past. This means: (r2630)

– original item_scraped signal was removed

– original item_passed signal was renamed to item_scraped

– old log lines Scraped Item... were removed

– old log lines Passed Item... were renamed to Scraped Item... lines and downgraded to
DEBUG level

• Reduced Scrapy codebase by striping part of Scrapy code into two new libraries:

– w3lib (several functions from scrapy.utils.{http,markup,multipart,response,url},
done in r2584)

– scrapely (was scrapy.contrib.ibl, done in r2586)

• Removed unused function: scrapy.utils.request.request_info() (r2577)

• Removed googledir project from examples/googledir. There’s now a new example project called dirbot available
on github: https://github.com/scrapy/dirbot

• Removed support for default field values in Scrapy items (r2616)

• Removed experimental crawlspider v2 (r2632)

• Removed scheduler middleware to simplify architecture. Duplicates filter is now done in the scheduler itself,
using the same dupe fltering class as before (DUPEFILTER_CLASS setting) (r2640)

• Removed support for passing urls to scrapy crawl command (use scrapy parse instead) (r2704)

8.1. Release notes 177

http://hg.scrapy.org/scrapy/changeset/2643
http://hg.scrapy.org/scrapy/changeset/2639
http://hg.scrapy.org/scrapy/changeset/2636
http://hg.scrapy.org/scrapy/changeset/2653
http://hg.scrapy.org/scrapy/changeset/2631
http://hg.scrapy.org/scrapy/changeset/2628
http://hg.scrapy.org/scrapy/changeset/2625
http://hg.scrapy.org/scrapy/changeset/2599
http://hg.scrapy.org/scrapy/changeset/2576
http://hg.scrapy.org/scrapy/changeset/2571
http://hg.scrapy.org/scrapy/changeset/2578
http://hg.scrapy.org/scrapy/changeset/2552
http://hg.scrapy.org/scrapy/changeset/2579
http://hg.scrapy.org/scrapy/changeset/2630
http://https://github.com/scrapy/w3lib
http://hg.scrapy.org/scrapy/changeset/2584
https://github.com/scrapy/scrapely
http://hg.scrapy.org/scrapy/changeset/2586
http://hg.scrapy.org/scrapy/changeset/2577
https://github.com/scrapy/dirbot
http://hg.scrapy.org/scrapy/changeset/2616
http://hg.scrapy.org/scrapy/changeset/2632
http://hg.scrapy.org/scrapy/changeset/2640
http://hg.scrapy.org/scrapy/changeset/2704

Scrapy Documentation, Release 0.18.4

• Removed deprecated Execution Queue (r2704)

• Removed (undocumented) spider context extension (from scrapy.contrib.spidercontext) (r2780)

• removed CONCURRENT_SPIDERS setting (use scrapyd maxproc instead) (r2789)

• Renamed attributes of core components: downloader.sites -> downloader.slots, scraper.sites -> scraper.slots
(r2717, r2718)

• Renamed setting CLOSESPIDER_ITEMPASSED to CLOSESPIDER_ITEMCOUNT (r2655). Backwards com-
patibility kept.

8.1.17 0.12

The numbers like #NNN reference tickets in the old issue tracker (Trac) which is no longer available.

New features and improvements

• Passed item is now sent in the item argument of the item_passed (#273)

• Added verbose option to scrapy version command, useful for bug reports (#298)

• HTTP cache now stored by default in the project data dir (#279)

• Added project data storage directory (#276, #277)

• Documented file structure of Scrapy projects (see command-line tool doc)

• New lxml backend for XPath selectors (#147)

• Per-spider settings (#245)

• Support exit codes to signal errors in Scrapy commands (#248)

• Added -c argument to scrapy shell command

• Made libxml2 optional (#260)

• New deploy command (#261)

• Added CLOSESPIDER_PAGECOUNT setting (#253)

• Added CLOSESPIDER_ERRORCOUNT setting (#254)

Scrapyd changes

• Scrapyd now uses one process per spider

• It stores one log file per spider run, and rotate them keeping the lastest 5 logs per spider (by default)

• A minimal web ui was added, available at http://localhost:6800 by default

• There is now a scrapy server command to start a Scrapyd server of the current project

Changes to settings

• added HTTPCACHE_ENABLED setting (False by default) to enable HTTP cache middleware

• changed HTTPCACHE_EXPIRATION_SECS semantics: now zero means “never expire”.

178 Chapter 8. All the rest

http://hg.scrapy.org/scrapy/changeset/2704
http://hg.scrapy.org/scrapy/changeset/2780
http://hg.scrapy.org/scrapy/changeset/2789
http://hg.scrapy.org/scrapy/changeset/2717
http://hg.scrapy.org/scrapy/changeset/2718
http://hg.scrapy.org/scrapy/changeset/2655
http://localhost:6800

Scrapy Documentation, Release 0.18.4

Deprecated/obsoleted functionality

• Deprecated runserver command in favor of server command which starts a Scrapyd server. See also:
Scrapyd changes

• Deprecated queue command in favor of using Scrapyd schedule.json API. See also: Scrapyd changes

• Removed the !LxmlItemLoader (experimental contrib which never graduated to main contrib)

8.1.18 0.10

The numbers like #NNN reference tickets in the old issue tracker (Trac) which is no longer available.

New features and improvements

• New Scrapy service called scrapyd for deploying Scrapy crawlers in production (#218) (documentation avail-
able)

• Simplified Images pipeline usage which doesn’t require subclassing your own images pipeline now (#217)

• Scrapy shell now shows the Scrapy log by default (#206)

• Refactored execution queue in a common base code and pluggable backends called “spider queues” (#220)

• New persistent spider queue (based on SQLite) (#198), available by default, which allows to start Scrapy in
server mode and then schedule spiders to run.

• Added documentation for Scrapy command-line tool and all its available sub-commands. (documentation avail-
able)

• Feed exporters with pluggable backends (#197) (documentation available)

• Deferred signals (#193)

• Added two new methods to item pipeline open_spider(), close_spider() with deferred support (#195)

• Support for overriding default request headers per spider (#181)

• Replaced default Spider Manager with one with similar functionality but not depending on Twisted Plugins
(#186)

• Splitted Debian package into two packages - the library and the service (#187)

• Scrapy log refactoring (#188)

• New extension for keeping persistent spider contexts among different runs (#203)

• Added dont_redirect request.meta key for avoiding redirects (#233)

• Added dont_retry request.meta key for avoiding retries (#234)

Command-line tool changes

• New scrapy command which replaces the old scrapy-ctl.py (#199) - there is only one global scrapy command
now, instead of one scrapy-ctl.py per project - Added scrapy.bat script for running more conveniently from
Windows

• Added bash completion to command-line tool (#210)

• Renamed command start to runserver (#209)

8.1. Release notes 179

Scrapy Documentation, Release 0.18.4

API changes

• url and body attributes of Request objects are now read-only (#230)

• Request.copy() and Request.replace() now also copies their callback and errback attributes
(#231)

• Removed UrlFilterMiddleware from scrapy.contrib (already disabled by default)

• Offsite middelware doesn’t filter out any request coming from a spider that doesn’t have a allowed_domains
attribute (#225)

• Removed Spider Manager load() method. Now spiders are loaded in the constructor itself.

• Changes to Scrapy Manager (now called “Crawler”):

– scrapy.core.manager.ScrapyManager class renamed to scrapy.crawler.Crawler

– scrapy.core.manager.scrapymanager singleton moved to
scrapy.project.crawler

• Moved module: scrapy.contrib.spidermanager to scrapy.spidermanager

• Spider Manager singleton moved from scrapy.spider.spiders to the spiders‘ attribute of
‘‘scrapy.project.crawler singleton.

• moved Stats Collector classes: (#204)

– scrapy.stats.collector.StatsCollector to scrapy.statscol.StatsCollector

– scrapy.stats.collector.SimpledbStatsCollector to
scrapy.contrib.statscol.SimpledbStatsCollector

• default per-command settings are now specified in the default_settings attribute of command object
class (#201)

• changed arguments of Item pipeline process_item() method from (spider, item) to (item, spider)

– backwards compatibility kept (with deprecation warning)

• moved scrapy.core.signals module to scrapy.signals

– backwards compatibility kept (with deprecation warning)

• moved scrapy.core.exceptions module to scrapy.exceptions

– backwards compatibility kept (with deprecation warning)

• added handles_request() class method to BaseSpider

• dropped scrapy.log.exc() function (use scrapy.log.err() instead)

• dropped component argument of scrapy.log.msg() function

• dropped scrapy.log.log_level attribute

• Added from_settings() class methods to Spider Manager, and Item Pipeline Manager

Changes to settings

• Added HTTPCACHE_IGNORE_SCHEMES setting to ignore certain schemes on !HttpCacheMiddleware (#225)

• Added SPIDER_QUEUE_CLASS setting which defines the spider queue to use (#220)

• Added KEEP_ALIVE setting (#220)

180 Chapter 8. All the rest

Scrapy Documentation, Release 0.18.4

• Removed SERVICE_QUEUE setting (#220)

• Removed COMMANDS_SETTINGS_MODULE setting (#201)

• Renamed REQUEST_HANDLERS to DOWNLOAD_HANDLERS and make download handlers classes (instead of
functions)

8.1.19 0.9

The numbers like #NNN reference tickets in the old issue tracker (Trac) which is no longer available.

New features and improvements

• Added SMTP-AUTH support to scrapy.mail

• New settings added: MAIL_USER, MAIL_PASS (r2065 | #149)

• Added new scrapy-ctl view command - To view URL in the browser, as seen by Scrapy (r2039)

• Added web service for controlling Scrapy process (this also deprecates the web console. (r2053 | #167)

• Support for running Scrapy as a service, for production systems (r1988, r2054, r2055, r2056, r2057 | #168)

• Added wrapper induction library (documentation only available in source code for now). (r2011)

• Simplified and improved response encoding support (r1961, r1969)

• Added LOG_ENCODING setting (r1956, documentation available)

• Added RANDOMIZE_DOWNLOAD_DELAY setting (enabled by default) (r1923, doc available)

• MailSender is no longer IO-blocking (r1955 | #146)

• Linkextractors and new Crawlspider now handle relative base tag urls (r1960 | #148)

• Several improvements to Item Loaders and processors (r2022, r2023, r2024, r2025, r2026, r2027, r2028, r2029,
r2030)

• Added support for adding variables to telnet console (r2047 | #165)

• Support for requests without callbacks (r2050 | #166)

API changes

• Change Spider.domain_name to Spider.name (SEP-012, r1975)

• Response.encoding is now the detected encoding (r1961)

• HttpErrorMiddleware now returns None or raises an exception (r2006 | #157)

• scrapy.command modules relocation (r2035, r2036, r2037)

• Added ExecutionQueue for feeding spiders to scrape (r2034)

• Removed ExecutionEngine singleton (r2039)

• Ported S3ImagesStore (images pipeline) to use boto and threads (r2033)

• Moved module: scrapy.management.telnet to scrapy.telnet (r2047)

8.1. Release notes 181

http://hg.scrapy.org/scrapy/changeset/2065
http://hg.scrapy.org/scrapy/changeset/2039
http://hg.scrapy.org/scrapy/changeset/2053
http://hg.scrapy.org/scrapy/changeset/1988
http://hg.scrapy.org/scrapy/changeset/2054
http://hg.scrapy.org/scrapy/changeset/2055
http://hg.scrapy.org/scrapy/changeset/2056
http://hg.scrapy.org/scrapy/changeset/2057
http://hg.scrapy.org/scrapy/changeset/2011
http://hg.scrapy.org/scrapy/changeset/1961
http://hg.scrapy.org/scrapy/changeset/1969
http://hg.scrapy.org/scrapy/changeset/1956
http://hg.scrapy.org/scrapy/changeset/1923
http://hg.scrapy.org/scrapy/changeset/1955
http://hg.scrapy.org/scrapy/changeset/1960
http://hg.scrapy.org/scrapy/changeset/2022
http://hg.scrapy.org/scrapy/changeset/2023
http://hg.scrapy.org/scrapy/changeset/2024
http://hg.scrapy.org/scrapy/changeset/2025
http://hg.scrapy.org/scrapy/changeset/2026
http://hg.scrapy.org/scrapy/changeset/2027
http://hg.scrapy.org/scrapy/changeset/2028
http://hg.scrapy.org/scrapy/changeset/2029
http://hg.scrapy.org/scrapy/changeset/2030
http://hg.scrapy.org/scrapy/changeset/2047
http://hg.scrapy.org/scrapy/changeset/2050
http://hg.scrapy.org/scrapy/changeset/1975
http://hg.scrapy.org/scrapy/changeset/1961
http://hg.scrapy.org/scrapy/changeset/2006
http://hg.scrapy.org/scrapy/changeset/2035
http://hg.scrapy.org/scrapy/changeset/2036
http://hg.scrapy.org/scrapy/changeset/2037
http://hg.scrapy.org/scrapy/changeset/2034
http://hg.scrapy.org/scrapy/changeset/2039
http://hg.scrapy.org/scrapy/changeset/2033
http://hg.scrapy.org/scrapy/changeset/2047

Scrapy Documentation, Release 0.18.4

Changes to default settings

• Changed default SCHEDULER_ORDER to DFO (r1939)

8.1.20 0.8

The numbers like #NNN reference tickets in the old issue tracker (Trac) which is no longer available.

New features

• Added DEFAULT_RESPONSE_ENCODING setting (r1809)

• Added dont_click argument to FormRequest.from_response() method (r1813, r1816)

• Added clickdata argument to FormRequest.from_response() method (r1802, r1803)

• Added support for HTTP proxies (HttpProxyMiddleware) (r1781, r1785)

• Offiste spider middleware now logs messages when filtering out requests (r1841)

Backwards-incompatible changes

• Changed scrapy.utils.response.get_meta_refresh() signature (r1804)

• Removed deprecated scrapy.item.ScrapedItem class - use scrapy.item.Item instead (r1838)

• Removed deprecated scrapy.xpath module - use scrapy.selector instead. (r1836)

• Removed deprecated core.signals.domain_open signal - use core.signals.domain_opened
instead (r1822)

• log.msg() now receives a spider argument (r1822)

– Old domain argument has been deprecated and will be removed in 0.9. For spiders, you should
always use the spider argument and pass spider references. If you really want to pass a string, use
the component argument instead.

• Changed core signals domain_opened, domain_closed, domain_idle

• Changed Item pipeline to use spiders instead of domains

– The domain argument of process_item() item pipeline method was changed to spider, the
new signature is: process_item(spider, item) (r1827 | #105)

– To quickly port your code (to work with Scrapy 0.8) just use spider.domain_name where you
previously used domain.

• Changed Stats API to use spiders instead of domains (r1849 | #113)

– StatsCollector was changed to receive spider references (instead of domains) in its methods
(set_value, inc_value, etc).

– added StatsCollector.iter_spider_stats() method

– removed StatsCollector.list_domains() method

– Also, Stats signals were renamed and now pass around spider references (instead of domains). Here’s
a summary of the changes:

– To quickly port your code (to work with Scrapy 0.8) just use spider.domain_name where you
previously used domain. spider_stats contains exactly the same data as domain_stats.

182 Chapter 8. All the rest

http://hg.scrapy.org/scrapy/changeset/1939
http://hg.scrapy.org/scrapy/changeset/1809
http://hg.scrapy.org/scrapy/changeset/1813
http://hg.scrapy.org/scrapy/changeset/1816
http://hg.scrapy.org/scrapy/changeset/1802
http://hg.scrapy.org/scrapy/changeset/1803
http://hg.scrapy.org/scrapy/changeset/1781
http://hg.scrapy.org/scrapy/changeset/1785
http://hg.scrapy.org/scrapy/changeset/1841
http://hg.scrapy.org/scrapy/changeset/1804
http://hg.scrapy.org/scrapy/changeset/1838
http://hg.scrapy.org/scrapy/changeset/1836
http://hg.scrapy.org/scrapy/changeset/1822
http://hg.scrapy.org/scrapy/changeset/1822
http://hg.scrapy.org/scrapy/changeset/1827
http://hg.scrapy.org/scrapy/changeset/1849

Scrapy Documentation, Release 0.18.4

• CloseDomain extension moved to scrapy.contrib.closespider.CloseSpider (r1833)

– Its settings were also renamed:

* CLOSEDOMAIN_TIMEOUT to CLOSESPIDER_TIMEOUT

* CLOSEDOMAIN_ITEMCOUNT to CLOSESPIDER_ITEMCOUNT

• Removed deprecated SCRAPYSETTINGS_MODULE environment variable - use
SCRAPY_SETTINGS_MODULE instead (r1840)

• Renamed setting: REQUESTS_PER_DOMAIN to CONCURRENT_REQUESTS_PER_SPIDER (r1830, r1844)

• Renamed setting: CONCURRENT_DOMAINS to CONCURRENT_SPIDERS (r1830)

• Refactored HTTP Cache middleware

• HTTP Cache middleware has been heavilty refactored, retaining the same functionality except for the domain
sectorization which was removed. (r1843)

• Renamed exception: DontCloseDomain to DontCloseSpider (r1859 | #120)

• Renamed extension: DelayedCloseDomain to SpiderCloseDelay (r1861 | #121)

• Removed obsolete scrapy.utils.markup.remove_escape_chars function - use
scrapy.utils.markup.replace_escape_chars instead (r1865)

8.1.21 0.7

First release of Scrapy.

8.2 Contributing to Scrapy

There are many ways to contribute to Scrapy. Here are some of them:

• Blog about Scrapy. Tell the world how you’re using Scrapy. This will help newcomers with more examples and
the Scrapy project to increase its visibility.

• Report bugs and request features in the issue tracker, trying to follow the guidelines detailed in Reporting bugs
below.

• Submit patches for new functionality and/or bug fixes. Please read Writing patches and Submitting patches
below for details on how to write and submit a patch.

• Join the scrapy-developers mailing list and share your ideas on how to improve Scrapy. We’re always open to
suggestions.

8.2.1 Reporting bugs

Well-written bug reports are very helpful, so keep in mind the following guidelines when reporting a new bug.

• check the FAQ first to see if your issue is addressed in a well-known question

• check the open issues to see if it has already been reported. If it has, don’t dismiss the report but check the ticket
history and comments, you may find additional useful information to contribute.

• search the scrapy-users list to see if it has been discussed there, or if you’re not sure if what you’re seeing is a
bug. You can also ask in the #scrapy IRC channel.

8.2. Contributing to Scrapy 183

http://hg.scrapy.org/scrapy/changeset/1833
http://hg.scrapy.org/scrapy/changeset/1840
http://hg.scrapy.org/scrapy/changeset/1830
http://hg.scrapy.org/scrapy/changeset/1844
http://hg.scrapy.org/scrapy/changeset/1830
http://hg.scrapy.org/scrapy/changeset/1843
http://hg.scrapy.org/scrapy/changeset/1859
http://hg.scrapy.org/scrapy/changeset/1861
http://hg.scrapy.org/scrapy/changeset/1865
https://github.com/scrapy/scrapy/issues
http://groups.google.com/group/scrapy-developers
https://github.com/scrapy/scrapy/issues
http://groups.google.com/group/scrapy-users

Scrapy Documentation, Release 0.18.4

• write complete, reproducible, specific bug reports. The smaller the test case, the better. Remember that other
developers won’t have your project to reproduce the bug, so please include all relevant files required to reproduce
it.

• include the output of scrapy version -v so developers working on your bug know exactly which version
and platform it occurred on, which is often very helpful for reproducing it, or knowing if it was already fixed.

8.2.2 Writing patches

The better written a patch is, the higher chance that it’ll get accepted and the sooner that will be merged.

Well-written patches should:

• contain the minimum amount of code required for the specific change. Small patches are easier to review and
merge. So, if you’re doing more than one change (or bug fix), please consider submitting one patch per change.
Do not collapse multiple changes into a single patch. For big changes consider using a patch queue.

• pass all unit-tests. See Running tests below.

• include one (or more) test cases that check the bug fixed or the new functionality added. See Writing tests below.

• if you’re adding or changing a public (documented) API, please include the documentation changes in the same
patch. See Documentation policies below.

8.2.3 Submitting patches

The best way to submit a patch is to issue a pull request on Github, optionally creating a new issue first.

Remember to explain what was fixed or the new functionality (what it is, why it’s needed, etc). The more info you
include, the easier will be for core developers to understand and accept your patch.

You can also discuss the new functionality (or bug fix) in scrapy-developers first, before creating the patch, but it’s
always good to have a patch ready to illustrate your arguments and show that you have put some additional thought
into the subject.

Finally, try to keep aesthetic changes (PEP 8 compliance, unused imports removal, etc) in separate commits than
functional changes, to make the pull request easier to review.

8.2.4 Coding style

Please follow these coding conventions when writing code for inclusion in Scrapy:

• Unless otherwise specified, follow PEP 8.

• It’s OK to use lines longer than 80 chars if it improves the code readability.

• Don’t put your name in the code you contribute. Our policy is to keep the contributor’s name in the AUTHORS
file distributed with Scrapy.

8.2.5 Scrapy Contrib

Scrapy contrib shares a similar rationale as Django contrib, which is explained in this post. If you are working on a
new functionality, please follow that rationale to decide whether it should be a Scrapy contrib. If unsure, you can ask
in scrapy-developers.

184 Chapter 8. All the rest

http://help.github.com/send-pull-requests/
http://groups.google.com/group/scrapy-developers
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://github.com/scrapy/scrapy/blob/master/AUTHORS
http://jacobian.org/writing/what-is-django-contrib/
http://groups.google.com/group/scrapy-developers

Scrapy Documentation, Release 0.18.4

8.2.6 Documentation policies

• Don’t use docstrings for documenting classes, or methods which are already documented in the official (sphinx)
documentation. For example, the ItemLoader.add_value() method should be documented in the sphinx
documentation, not its docstring.

• Do use docstrings for documenting functions not present in the official (sphinx) documentation, such as func-
tions from scrapy.utils package and its sub-modules.

8.2.7 Tests

Tests are implemented using the Twisted unit-testing framework called trial.

Running tests

To run all tests go to the root directory of Scrapy source code and run:

bin/runtests.sh (on unix)

bin\runtests.bat (on windows)

To run a specific test (say scrapy.tests.test_contrib_loader) use:

bin/runtests.sh scrapy.tests.test_contrib_loader (on unix)

bin\runtests.bat scrapy.tests.test_contrib_loader (on windows)

Writing tests

All functionality (including new features and bug fixes) must include a test case to check that it works as expected, so
please include tests for your patches if you want them to get accepted sooner.

Scrapy uses unit-tests, which are located in the scrapy.tests package (scrapy/tests directory). Their module name
typically resembles the full path of the module they’re testing. For example, the item loaders code is in:

scrapy.contrib.loader

And their unit-tests are in:

scrapy.tests.test_contrib_loader

8.3 Versioning and API Stability

8.3.1 Versioning

Scrapy uses the odd-numbered versions for development releases.

There are 3 numbers in a Scrapy version: A.B.C

• A is the major version. This will rarely change and will signify very large changes. So far, only zero is available
for A as Scrapy hasn’t yet reached 1.0.

• B is the release number. This will include many changes including features and things that possibly break
backwards compatibility. Even Bs will be stable branches, and odd Bs will be development.

• C is the bugfix release number.

8.3. Versioning and API Stability 185

http://twistedmatrix.com/documents/current/core/development/policy/test-standard.html
https://github.com/scrapy/scrapy/tree/master/scrapy/tests
http://en.wikipedia.org/wiki/Software_versioning#Odd-numbered_versions_for_development_releases

Scrapy Documentation, Release 0.18.4

For example:

• 0.14.1 is the first bugfix release of the 0.14 series (safe to use in production)

8.3.2 API Stability

API stability is one of Scrapy major goals for the 1.0 release, which doesn’t have a due date scheduled yet.

Methods or functions that start with a single dash (_) are private and should never be relied as stable. Besides those,
the plan is to stabilize and document the entire API, as we approach the 1.0 release.

Also, keep in mind that stable doesn’t mean complete: stable APIs could grow new methods or functionality but the
existing methods should keep working the same way.

8.4 Experimental features

This section documents experimental Scrapy features that may become stable in future releases, but whose API is not
yet stable. Use them with caution, and subscribe to the mailing lists to get notified of any changes.

Since it’s not revised so frequently, this section may contain documentation which is outdated, incomplete or overlap-
ping with stable documentation (until it’s properly merged) . Use at your own risk.

Warning: This documentation is a work in progress. Use at your own risk.

8.4.1 Add commands using external libraries

You can also add Scrapy commands from an external library by adding scrapy.commands section into entry_points in
the setup.py.

The following example adds my_command command:

from setuptools import setup, find_packages

setup(name='scrapy-mymodule',
entry_points={
'scrapy.commands': [

'my_command=my_scrapy_module.commands:MyCommand',
],

},
)

Release notes See what has changed in recent Scrapy versions.

Contributing to Scrapy Learn how to contribute to the Scrapy project.

Versioning and API Stability Understand Scrapy versioning and API stability.

Experimental features Learn about bleeding-edge features.

186 Chapter 8. All the rest

http://scrapy.org/community/

Python Module Index

s
scrapy.contracts, 87
scrapy.contracts.default, 86
scrapy.contrib.closespider, 132
scrapy.contrib.corestats, 131
scrapy.contrib.debug, 133
scrapy.contrib.downloadermiddleware, 116
scrapy.contrib.downloadermiddleware.chunked,

122
scrapy.contrib.downloadermiddleware.cookies,

117
scrapy.contrib.downloadermiddleware.defaultheaders,

118
scrapy.contrib.downloadermiddleware.downloadtimeout,

118
scrapy.contrib.downloadermiddleware.httpauth,

118
scrapy.contrib.downloadermiddleware.httpcache,

119
scrapy.contrib.downloadermiddleware.httpcompression,

122
scrapy.contrib.downloadermiddleware.httpproxy,

122
scrapy.contrib.downloadermiddleware.redirect,

122
scrapy.contrib.downloadermiddleware.retry,

123
scrapy.contrib.downloadermiddleware.robotstxt,

124
scrapy.contrib.downloadermiddleware.stats,

124
scrapy.contrib.downloadermiddleware.useragent,

124
scrapy.contrib.exporter, 161
scrapy.contrib.linkextractors, 38
scrapy.contrib.linkextractors.sgml, 38
scrapy.contrib.loader, 46
scrapy.contrib.loader.processor, 53
scrapy.contrib.logstats, 131
scrapy.contrib.memdebug, 132

scrapy.contrib.memusage, 131
scrapy.contrib.pipeline.images, 103
scrapy.contrib.spidermiddleware, 125
scrapy.contrib.spidermiddleware.depth,

127
scrapy.contrib.spidermiddleware.httperror,

127
scrapy.contrib.spidermiddleware.offsite,

127
scrapy.contrib.spidermiddleware.referer,

128
scrapy.contrib.spidermiddleware.urllength,

128
scrapy.contrib.spiders, 33
scrapy.contrib.statsmailer, 133
scrapy.contrib.webservice, 73
scrapy.contrib.webservice.crawler, 73
scrapy.contrib.webservice.enginestatus,

73
scrapy.contrib.webservice.stats, 73
scrapy.crawler, 134
scrapy.exceptions, 160
scrapy.http, 139
scrapy.item, 26
scrapy.log, 66
scrapy.mail, 68
scrapy.selector, 43
scrapy.settings, 135
scrapy.signalmanager, 136
scrapy.signals, 158
scrapy.spider, 31
scrapy.statscol, 68
scrapy.telnet, 70
scrapy.utils.trackref, 98
scrapy.webservice, 131

187

Scrapy Documentation, Release 0.18.4

188 Python Module Index

Index

Symbols
__nonzero__() (scrapy.selector.XPathSelector method),

44

A
adapt_response() (scrapy.contrib.spiders.XMLFeedSpider

method), 35
add_value() (scrapy.contrib.loader.ItemLoader method),

50
add_xpath() (scrapy.contrib.loader.XPathItemLoader

method), 51
adjust_request_args() (scrapy.contracts.Contract method),

87
allowed_domains (scrapy.spider.BaseSpider attribute), 31
AUTOTHROTTLE_DEBUG

setting, 107
AUTOTHROTTLE_ENABLED

setting, 107
AUTOTHROTTLE_MAX_DELAY

setting, 107
AUTOTHROTTLE_START_DELAY

setting, 107
AWS_ACCESS_KEY_ID

setting, 147
AWS_SECRET_ACCESS_KEY

setting, 148

B
BaseItemExporter (class in scrapy.contrib.exporter), 163
BaseSgmlLinkExtractor (class in

scrapy.contrib.linkextractors.sgml), 40
BaseSpider (class in scrapy.spider), 31
bench

command, 26
body (scrapy.http.Request attribute), 140
body (scrapy.http.Response attribute), 144
body_as_unicode() (scrapy.http.TextResponse method),

145
BOT_NAME

setting, 148

C
check

command, 22
ChunkedTransferMiddleware (class in

scrapy.contrib.downloadermiddleware.chunked),
122

clear_stats() (scrapy.statscol.StatsCollector method), 137
close_spider(), 58
close_spider() (scrapy.statscol.StatsCollector method),

137
CloseSpider, 160
CLOSESPIDER_ERRORCOUNT

setting, 132
CLOSESPIDER_ITEMCOUNT

setting, 132
CLOSESPIDER_PAGECOUNT

setting, 132
CLOSESPIDER_TIMEOUT

setting, 132
command

bench, 26
check, 22
crawl, 22
deploy, 25
edit, 23
fetch, 23
genspider, 21
list, 23
parse, 24
runspider, 25
settings, 25
shell, 24
startproject, 21
version, 25
view, 24

COMMANDS_MODULE
setting, 26

Compose (class in scrapy.contrib.loader.processor), 53
COMPRESSION_ENABLED

setting, 122

189

Scrapy Documentation, Release 0.18.4

CONCURRENT_ITEMS
setting, 148

CONCURRENT_REQUESTS
setting, 148

CONCURRENT_REQUESTS_PER_DOMAIN
setting, 148

CONCURRENT_REQUESTS_PER_IP
setting, 148

configure() (scrapy.crawler.Crawler method), 134
connect() (scrapy.signalmanager.SignalManager

method), 136
context (scrapy.contrib.loader.ItemLoader attribute), 51
Contract (class in scrapy.contracts), 87
cookiejar

reqmeta, 117
COOKIES_DEBUG

setting, 118
COOKIES_ENABLED

setting, 118
CookiesMiddleware (class in

scrapy.contrib.downloadermiddleware.cookies),
117

copy() (scrapy.http.Request method), 141
copy() (scrapy.http.Response method), 144
CoreStats (class in scrapy.contrib.corestats), 131
crawl

command, 22
Crawler (class in scrapy.crawler), 134
CrawlerResource (class in

scrapy.contrib.webservice.crawler), 73
CrawlSpider (class in scrapy.contrib.spiders), 33
CRITICAL (in module scrapy.log), 66
CSVFeedSpider (class in scrapy.contrib.spiders), 36
CsvItemExporter (class in scrapy.contrib.exporter), 165

D
DEBUG (in module scrapy.log), 66
default_input_processor (scrapy.contrib.loader.ItemLoader

attribute), 51
DEFAULT_ITEM_CLASS

setting, 148
default_item_class (scrapy.contrib.loader.ItemLoader at-

tribute), 51
default_output_processor

(scrapy.contrib.loader.ItemLoader attribute), 51
DEFAULT_REQUEST_HEADERS

setting, 149
default_selector_class (scrapy.contrib.loader.XPathItemLoader

attribute), 51
DefaultHeadersMiddleware (class in

scrapy.contrib.downloadermiddleware.defaultheaders),
118

delimiter (scrapy.contrib.spiders.CSVFeedSpider at-
tribute), 36

deploy
command, 25

DEPTH_LIMIT
setting, 149

DEPTH_PRIORITY
setting, 149

DEPTH_STATS
setting, 149

DEPTH_STATS_VERBOSE
setting, 149

DepthMiddleware (class in
scrapy.contrib.spidermiddleware.depth), 127

disconnect() (scrapy.signalmanager.SignalManager
method), 136

disconnect_all() (scrapy.signalmanager.SignalManager
method), 136

DNSCACHE_ENABLED
setting, 149

dont_redirect
reqmeta, 122

dont_retry
reqmeta, 123

DOWNLOAD_DELAY
setting, 150

DOWNLOAD_HANDLERS
setting, 151

DOWNLOAD_HANDLERS_BASE
setting, 151

DOWNLOAD_TIMEOUT
setting, 151

DOWNLOADER_DEBUG
setting, 149

DOWNLOADER_MIDDLEWARES
setting, 150

DOWNLOADER_MIDDLEWARES_BASE
setting, 150

DOWNLOADER_STATS
setting, 150

DownloaderMiddleware (class in
scrapy.contrib.downloadermiddleware), 116

DownloaderStats (class in
scrapy.contrib.downloadermiddleware.stats),
124

DownloadTimeoutMiddleware (class in
scrapy.contrib.downloadermiddleware.downloadtimeout),
118

DropItem, 160
DummyStatsCollector (class in scrapy.statscol), 68
DUPEFILTER_CLASS

setting, 151

E
edit

command, 23

190 Index

Scrapy Documentation, Release 0.18.4

encoding (scrapy.contrib.exporter.BaseItemExporter at-
tribute), 164

encoding (scrapy.http.TextResponse attribute), 145
engine (scrapy.crawler.Crawler attribute), 134
engine_started

signal, 158
engine_started() (in module scrapy.signals), 158
engine_stopped

signal, 158
engine_stopped() (in module scrapy.signals), 158
EngineStatusResource (class in

scrapy.contrib.webservice.enginestatus),
73

ERROR (in module scrapy.log), 66
export_empty_fields (scrapy.contrib.exporter.BaseItemExporter

attribute), 164
export_item() (scrapy.contrib.exporter.BaseItemExporter

method), 163
EXTENSIONS

setting, 151
extensions (scrapy.crawler.Crawler attribute), 134
EXTENSIONS_BASE

setting, 151
extract() (scrapy.selector.XPathSelector method), 44
extract() (scrapy.selector.XPathSelectorList method), 44
extract_unquoted() (scrapy.selector.XPathSelectorList

method), 44

F
FEED_EXPORTERS

setting, 63
FEED_EXPORTERS_BASE

setting, 63
FEED_FORMAT

setting, 62
FEED_STORAGES

setting, 63
FEED_STORAGES_BASE

setting, 63
FEED_STORE_EMPTY

setting, 62
FEED_URI

setting, 62
fetch

command, 23
Field (class in scrapy.item), 29
fields (scrapy.item.Item attribute), 29
fields_to_export (scrapy.contrib.exporter.BaseItemExporter

attribute), 164
finish_exporting() (scrapy.contrib.exporter.BaseItemExporter

method), 164
flags (scrapy.http.Response attribute), 144
FormRequest (class in scrapy.http), 142

from_response() (scrapy.http.FormRequest class
method), 142

from_settings() (scrapy.mail.MailSender class method),
69

G
genspider

command, 21
get() (scrapy.settings.Settings method), 135
get_collected_values() (scrapy.contrib.loader.ItemLoader

method), 50
get_input_processor() (scrapy.contrib.loader.ItemLoader

method), 50
get_media_requests() (scrapy.contrib.pipeline.images.ImagesPipeline

method), 103
get_oldest() (in module scrapy.utils.trackref), 99
get_output_processor() (scrapy.contrib.loader.ItemLoader

method), 50
get_output_value() (scrapy.contrib.loader.ItemLoader

method), 50
get_stats() (scrapy.statscol.StatsCollector method), 136
get_target() (scrapy.contrib.webservice.enginestatus.scrapy.webservice.JsonRpcResource

method), 75
get_value() (scrapy.contrib.loader.ItemLoader method),

50
get_value() (scrapy.statscol.StatsCollector method), 136
get_xpath() (scrapy.contrib.loader.XPathItemLoader

method), 51
getbool() (scrapy.settings.Settings method), 135
getfloat() (scrapy.settings.Settings method), 135
getint() (scrapy.settings.Settings method), 135
getlist() (scrapy.settings.Settings method), 135

H
handle_httpstatus_list

reqmeta, 127
headers (scrapy.contrib.spiders.CSVFeedSpider at-

tribute), 36
headers (scrapy.http.Request attribute), 140
headers (scrapy.http.Response attribute), 144
HtmlResponse (class in scrapy.http), 146
HtmlXPathSelector (class in scrapy.selector), 44
HttpAuthMiddleware (class in

scrapy.contrib.downloadermiddleware.httpauth),
118

HTTPCACHE_DBM_MODULE
setting, 121

HTTPCACHE_DIR
setting, 121

HTTPCACHE_ENABLED
setting, 121

HTTPCACHE_EXPIRATION_SECS
setting, 121

HTTPCACHE_IGNORE_HTTP_CODES

Index 191

Scrapy Documentation, Release 0.18.4

setting, 121
HTTPCACHE_IGNORE_MISSING

setting, 121
HTTPCACHE_IGNORE_SCHEMES

setting, 121
HTTPCACHE_POLICY

setting, 121
HTTPCACHE_STORAGE

setting, 121
HttpCacheMiddleware (class in

scrapy.contrib.downloadermiddleware.httpcache),
119

HttpCompressionMiddleware (class in
scrapy.contrib.downloadermiddleware.httpcompression),
122

HttpErrorMiddleware (class in
scrapy.contrib.spidermiddleware.httperror),
127

HttpProxyMiddleware (class in
scrapy.contrib.downloadermiddleware.httpproxy),
122

I
Identity (class in scrapy.contrib.loader.processor), 53
IgnoreRequest, 161
IMAGES_EXPIRES

setting, 102
IMAGES_MIN_HEIGHT

setting, 103
IMAGES_MIN_WIDTH

setting, 103
IMAGES_STORE

setting, 101
IMAGES_THUMBS

setting, 102
ImagesPipeline (class in scrapy.contrib.pipeline.images),

103
inc_value() (scrapy.statscol.StatsCollector method), 137
INFO (in module scrapy.log), 66
Item (class in scrapy.item), 29
item (scrapy.contrib.loader.ItemLoader attribute), 50
item_completed() (scrapy.contrib.pipeline.images.ImagesPipeline

method), 104
item_dropped

signal, 158
item_dropped() (in module scrapy.signals), 158
ITEM_PIPELINES

setting, 152
item_scraped

signal, 158
item_scraped() (in module scrapy.signals), 158
ItemLoader (class in scrapy.contrib.loader), 50
iter_all() (in module scrapy.utils.trackref), 99

iterator (scrapy.contrib.spiders.XMLFeedSpider at-
tribute), 34

itertag (scrapy.contrib.spiders.XMLFeedSpider attribute),
34

J
jDITOR

setting, 151
Join (class in scrapy.contrib.loader.processor), 53
JsonItemExporter (class in scrapy.contrib.exporter), 166
JsonLinesItemExporter (class in scrapy.contrib.exporter),

166

L
list

command, 23
load_item() (scrapy.contrib.loader.ItemLoader method),

50
log() (scrapy.spider.BaseSpider method), 32
LOG_ENABLED

setting, 152
LOG_ENCODING

setting, 152
LOG_FILE

setting, 152
LOG_LEVEL

setting, 152
LOG_STDOUT

setting, 153
LogStats (class in scrapy.contrib.logstats), 131

M
MAIL_FROM

setting, 69
MAIL_HOST

setting, 69
MAIL_PASS

setting, 70
MAIL_PORT

setting, 69
MAIL_USER

setting, 70
MailSender (class in scrapy.mail), 68
make_requests_from_url() (scrapy.spider.BaseSpider

method), 31
MapCompose (class in scrapy.contrib.loader.processor),

54
max_value() (scrapy.statscol.StatsCollector method), 137
MEMDEBUG_ENABLED

setting, 153
MEMDEBUG_NOTIFY

setting, 153
MemoryStatsCollector (class in scrapy.statscol), 68
MEMUSAGE_ENABLED

192 Index

Scrapy Documentation, Release 0.18.4

setting, 153
MEMUSAGE_LIMIT_MB

setting, 153
MEMUSAGE_NOTIFY_MAIL

setting, 153
MEMUSAGE_REPORT

setting, 154
MEMUSAGE_WARNING_MB

setting, 154
meta (scrapy.http.Request attribute), 140
meta (scrapy.http.Response attribute), 144
METAREFRESH_ENABLED

setting, 123
MetaRefreshMiddleware (class in

scrapy.contrib.downloadermiddleware.redirect),
123

method (scrapy.http.Request attribute), 140
min_value() (scrapy.statscol.StatsCollector method), 137
msg() (in module scrapy.log), 66

N
name (scrapy.spider.BaseSpider attribute), 31
namespaces (scrapy.contrib.spiders.XMLFeedSpider at-

tribute), 35
NEWSPIDER_MODULE

setting, 154
NotConfigured, 161
NotSupported, 161

O
object_ref (class in scrapy.utils.trackref), 98
OffsiteMiddleware (class in

scrapy.contrib.spidermiddleware.offsite),
127

open_spider(), 58
open_spider() (scrapy.statscol.StatsCollector method),

137
overrides (scrapy.settings.Settings attribute), 135

P
parse

command, 24
parse() (scrapy.spider.BaseSpider method), 32
parse_node() (scrapy.contrib.spiders.XMLFeedSpider

method), 35
parse_row() (scrapy.contrib.spiders.CSVFeedSpider

method), 36
parse_start_url() (scrapy.contrib.spiders.CrawlSpider

method), 33
PickleItemExporter (class in scrapy.contrib.exporter), 165
post_process() (scrapy.contracts.Contract method), 87
PprintItemExporter (class in scrapy.contrib.exporter), 166
pre_process() (scrapy.contracts.Contract method), 87
print_live_refs() (in module scrapy.utils.trackref), 99

process_exception() (scrapy.contrib.downloadermiddleware.DownloaderMiddleware
method), 116

process_item(), 58
process_request() (scrapy.contrib.downloadermiddleware.DownloaderMiddleware

method), 116
process_response() (scrapy.contrib.downloadermiddleware.DownloaderMiddleware

method), 116
process_results() (scrapy.contrib.spiders.XMLFeedSpider

method), 35
process_spider_exception()

(scrapy.contrib.spidermiddleware.SpiderMiddleware
method), 126

process_spider_input() (scrapy.contrib.spidermiddleware.SpiderMiddleware
method), 125

process_spider_output() (scrapy.contrib.spidermiddleware.SpiderMiddleware
method), 125

process_start_requests() (scrapy.contrib.spidermiddleware.SpiderMiddleware
method), 126

Python Enhancement Proposals
PEP 8, 184

R
RANDOMIZE_DOWNLOAD_DELAY

setting, 154
re() (scrapy.selector.XPathSelector method), 44
re() (scrapy.selector.XPathSelectorList method), 44
REDIRECT_ENABLED

setting, 122
REDIRECT_MAX_METAREFRESH_DELAY

setting, 123, 155
REDIRECT_MAX_TIMES

setting, 122, 154
REDIRECT_PRIORITY_ADJUST

setting, 155
redirect_urls

reqmeta, 122
RedirectMiddleware (class in

scrapy.contrib.downloadermiddleware.redirect),
122

REFERER_ENABLED
setting, 128

RefererMiddleware (class in
scrapy.contrib.spidermiddleware.referer),
128

register_namespace() (scrapy.selector.XPathSelector
method), 44

remove_namespaces() (scrapy.selector.XPathSelector
method), 44

replace() (scrapy.http.Request method), 141
replace() (scrapy.http.Response method), 144
replace_value() (scrapy.contrib.loader.ItemLoader

method), 50
replace_xpath() (scrapy.contrib.loader.XPathItemLoader

method), 51

Index 193

Scrapy Documentation, Release 0.18.4

reqmeta
cookiejar, 117
dont_redirect, 122
dont_retry, 123
handle_httpstatus_list, 127
redirect_urls, 122

Request (class in scrapy.http), 139
request (scrapy.http.Response attribute), 144
Response (class in scrapy.http), 143
response_downloaded

signal, 160
response_downloaded() (in module scrapy.signals), 160
response_received

signal, 160
response_received() (in module scrapy.signals), 160
RETRY_ENABLED

setting, 124
RETRY_HTTP_CODES

setting, 124
RETRY_TIMES

setting, 124
RetryMiddleware (class in

scrapy.contrib.downloadermiddleware.retry),
123

ReturnsContract (class in scrapy.contracts.default), 86
ROBOTSTXT_OBEY

setting, 155
RobotsTxtMiddleware (class in

scrapy.contrib.downloadermiddleware.robotstxt),
124

Rule (class in scrapy.contrib.spiders), 33
rules (scrapy.contrib.spiders.CrawlSpider attribute), 33
runspider

command, 25

S
SCHEDULER

setting, 155
ScrapesContract (class in scrapy.contracts.default), 86
scrapy.contracts (module), 87
scrapy.contracts.default (module), 86
scrapy.contrib.closespider (module), 132
scrapy.contrib.closespider.CloseSpider (class in

scrapy.contrib.closespider), 132
scrapy.contrib.corestats (module), 131
scrapy.contrib.debug (module), 133
scrapy.contrib.debug.Debugger (class in

scrapy.contrib.debug), 133
scrapy.contrib.debug.StackTraceDump (class in

scrapy.contrib.debug), 133
scrapy.contrib.downloadermiddleware (module), 116
scrapy.contrib.downloadermiddleware.chunked (module),

122

scrapy.contrib.downloadermiddleware.cookies (module),
117

scrapy.contrib.downloadermiddleware.defaultheaders
(module), 118

scrapy.contrib.downloadermiddleware.downloadtimeout
(module), 118

scrapy.contrib.downloadermiddleware.httpauth (module),
118

scrapy.contrib.downloadermiddleware.httpcache (mod-
ule), 119

scrapy.contrib.downloadermiddleware.httpcompression
(module), 122

scrapy.contrib.downloadermiddleware.httpproxy (mod-
ule), 122

scrapy.contrib.downloadermiddleware.redirect (module),
122

scrapy.contrib.downloadermiddleware.retry (module),
123

scrapy.contrib.downloadermiddleware.robotstxt (mod-
ule), 124

scrapy.contrib.downloadermiddleware.stats (module),
124

scrapy.contrib.downloadermiddleware.useragent (mod-
ule), 124

scrapy.contrib.exporter (module), 161
scrapy.contrib.linkextractors (module), 38
scrapy.contrib.linkextractors.sgml (module), 38
scrapy.contrib.loader (module), 46
scrapy.contrib.loader.processor (module), 53
scrapy.contrib.logstats (module), 131
scrapy.contrib.memdebug (module), 132
scrapy.contrib.memdebug.MemoryDebugger (class in

scrapy.contrib.memdebug), 132
scrapy.contrib.memusage (module), 131
scrapy.contrib.memusage.MemoryUsage (class in

scrapy.contrib.memusage), 131
scrapy.contrib.pipeline.images (module), 103
scrapy.contrib.spidermiddleware (module), 125
scrapy.contrib.spidermiddleware.depth (module), 127
scrapy.contrib.spidermiddleware.httperror (module), 127
scrapy.contrib.spidermiddleware.offsite (module), 127
scrapy.contrib.spidermiddleware.referer (module), 128
scrapy.contrib.spidermiddleware.urllength (module), 128
scrapy.contrib.spiders (module), 33
scrapy.contrib.statsmailer (module), 133
scrapy.contrib.statsmailer.StatsMailer (class in

scrapy.contrib.statsmailer), 133
scrapy.contrib.webservice (module), 73
scrapy.contrib.webservice.crawler (module), 73
scrapy.contrib.webservice.enginestatus (module), 73
scrapy.contrib.webservice.stats (module), 73
scrapy.crawler (module), 134
scrapy.exceptions (module), 160
scrapy.http (module), 139

194 Index

Scrapy Documentation, Release 0.18.4

scrapy.item (module), 26
scrapy.log (module), 66
scrapy.mail (module), 68
scrapy.selector (module), 43
scrapy.settings (module), 135
scrapy.signalmanager (module), 136
scrapy.signals (module), 158
scrapy.spider (module), 31
scrapy.statscol (module), 68, 136
scrapy.telnet (module), 70, 131
scrapy.telnet.TelnetConsole (class in scrapy.telnet), 131
scrapy.utils.trackref (module), 98
scrapy.webservice (module), 131
scrapy.webservice.JsonResource (class in

scrapy.contrib.webservice.enginestatus),
75

scrapy.webservice.JsonRpcResource (class in
scrapy.contrib.webservice.enginestatus),
75

scrapy.webservice.WebService (class in
scrapy.webservice), 131

select() (scrapy.selector.XPathSelector method), 43
select() (scrapy.selector.XPathSelectorList method), 44
selector (scrapy.contrib.loader.XPathItemLoader at-

tribute), 52
send() (scrapy.mail.MailSender method), 69
send_catch_log() (scrapy.signalmanager.SignalManager

method), 136
send_catch_log_deferred()

(scrapy.signalmanager.SignalManager
method), 136

serialize_field() (scrapy.contrib.exporter.BaseItemExporter
method), 163

set_stats() (scrapy.statscol.StatsCollector method), 136
set_value() (scrapy.statscol.StatsCollector method), 136
setting

AUTOTHROTTLE_DEBUG, 107
AUTOTHROTTLE_ENABLED, 107
AUTOTHROTTLE_MAX_DELAY, 107
AUTOTHROTTLE_START_DELAY, 107
AWS_ACCESS_KEY_ID, 147
AWS_SECRET_ACCESS_KEY, 148
BOT_NAME, 148
CLOSESPIDER_ERRORCOUNT, 132
CLOSESPIDER_ITEMCOUNT, 132
CLOSESPIDER_PAGECOUNT, 132
CLOSESPIDER_TIMEOUT, 132
COMMANDS_MODULE, 26
COMPRESSION_ENABLED, 122
CONCURRENT_ITEMS, 148
CONCURRENT_REQUESTS, 148
CONCURRENT_REQUESTS_PER_DOMAIN,

148
CONCURRENT_REQUESTS_PER_IP, 148

COOKIES_DEBUG, 118
COOKIES_ENABLED, 118
DEFAULT_ITEM_CLASS, 148
DEFAULT_REQUEST_HEADERS, 149
DEPTH_LIMIT, 149
DEPTH_PRIORITY, 149
DEPTH_STATS, 149
DEPTH_STATS_VERBOSE, 149
DNSCACHE_ENABLED, 149
DOWNLOAD_DELAY, 150
DOWNLOAD_HANDLERS, 151
DOWNLOAD_HANDLERS_BASE, 151
DOWNLOAD_TIMEOUT, 151
DOWNLOADER_DEBUG, 149
DOWNLOADER_MIDDLEWARES, 150
DOWNLOADER_MIDDLEWARES_BASE, 150
DOWNLOADER_STATS, 150
DUPEFILTER_CLASS, 151
EXTENSIONS, 151
EXTENSIONS_BASE, 151
FEED_EXPORTERS, 63
FEED_EXPORTERS_BASE, 63
FEED_FORMAT, 62
FEED_STORAGES, 63
FEED_STORAGES_BASE, 63
FEED_STORE_EMPTY, 62
FEED_URI, 62
HTTPCACHE_DBM_MODULE, 121
HTTPCACHE_DIR, 121
HTTPCACHE_ENABLED, 121
HTTPCACHE_EXPIRATION_SECS, 121
HTTPCACHE_IGNORE_HTTP_CODES, 121
HTTPCACHE_IGNORE_MISSING, 121
HTTPCACHE_IGNORE_SCHEMES, 121
HTTPCACHE_POLICY, 121
HTTPCACHE_STORAGE, 121
IMAGES_EXPIRES, 102
IMAGES_MIN_HEIGHT, 103
IMAGES_MIN_WIDTH, 103
IMAGES_STORE, 101
IMAGES_THUMBS, 102
ITEM_PIPELINES, 152
jDITOR, 151
LOG_ENABLED, 152
LOG_ENCODING, 152
LOG_FILE, 152
LOG_LEVEL, 152
LOG_STDOUT, 153
MAIL_FROM, 69
MAIL_HOST, 69
MAIL_PASS, 70
MAIL_PORT, 69
MAIL_USER, 70
MEMDEBUG_ENABLED, 153

Index 195

Scrapy Documentation, Release 0.18.4

MEMDEBUG_NOTIFY, 153
MEMUSAGE_ENABLED, 153
MEMUSAGE_LIMIT_MB, 153
MEMUSAGE_NOTIFY_MAIL, 153
MEMUSAGE_REPORT, 154
MEMUSAGE_WARNING_MB, 154
METAREFRESH_ENABLED, 123
NEWSPIDER_MODULE, 154
RANDOMIZE_DOWNLOAD_DELAY, 154
REDIRECT_ENABLED, 122
REDIRECT_MAX_METAREFRESH_DELAY,

123, 155
REDIRECT_MAX_TIMES, 122, 154
REDIRECT_PRIORITY_ADJUST, 155
REFERER_ENABLED, 128
RETRY_ENABLED, 124
RETRY_HTTP_CODES, 124
RETRY_TIMES, 124
ROBOTSTXT_OBEY, 155
SCHEDULER, 155
SPIDER_MIDDLEWARES, 155
SPIDER_MIDDLEWARES_BASE, 156
SPIDER_MODULES, 156
STATS_CLASS, 156
STATS_DUMP, 156
STATSMAILER_RCPTS, 156
TELNETCONSOLE_ENABLED, 156
TELNETCONSOLE_HOST, 72
TELNETCONSOLE_PORT, 72, 157
TEMPLATES_DIR, 157
URLLENGTH_LIMIT, 157
USER_AGENT, 157
WEBSERVICE_ENABLED, 74
WEBSERVICE_HOST, 74
WEBSERVICE_LOGFILE, 74
WEBSERVICE_PORT, 74

settings
command, 25

Settings (class in scrapy.settings), 135
settings (scrapy.crawler.Crawler attribute), 134
SgmlLinkExtractor (class in

scrapy.contrib.linkextractors.sgml), 39
shell

command, 24
signal

engine_started, 158
engine_stopped, 158
item_dropped, 158
item_scraped, 158
response_downloaded, 160
response_received, 160
spider_closed, 159
spider_error, 159
spider_idle, 159

spider_opened, 159
update_telnet_vars, 72

SignalManager (class in scrapy.signalmanager), 136
signals (scrapy.crawler.Crawler attribute), 134
sitemap_follow (scrapy.contrib.spiders.SitemapSpider at-

tribute), 37
sitemap_rules (scrapy.contrib.spiders.SitemapSpider at-

tribute), 37
sitemap_urls (scrapy.contrib.spiders.SitemapSpider at-

tribute), 36
SitemapSpider (class in scrapy.contrib.spiders), 36
spider_closed

signal, 159
spider_closed() (in module scrapy.signals), 159
spider_error

signal, 159
spider_error() (in module scrapy.signals), 159
spider_idle

signal, 159
spider_idle() (in module scrapy.signals), 159
SPIDER_MIDDLEWARES

setting, 155
SPIDER_MIDDLEWARES_BASE

setting, 156
SPIDER_MODULES

setting, 156
spider_opened

signal, 159
spider_opened() (in module scrapy.signals), 159
spider_stats (scrapy.statscol.MemoryStatsCollector at-

tribute), 68
SpiderMiddleware (class in

scrapy.contrib.spidermiddleware), 125
spiders (scrapy.crawler.Crawler attribute), 134
start() (in module scrapy.log), 66
start() (scrapy.crawler.Crawler method), 134
start_exporting() (scrapy.contrib.exporter.BaseItemExporter

method), 164
start_requests() (scrapy.spider.BaseSpider method), 31
start_urls (scrapy.spider.BaseSpider attribute), 31
startproject

command, 21
stats (scrapy.crawler.Crawler attribute), 134
STATS_CLASS

setting, 156
STATS_DUMP

setting, 156
StatsCollector (class in scrapy.statscol), 136
STATSMAILER_RCPTS

setting, 156
StatsResource (class in scrapy.contrib.webservice.stats),

73
status (scrapy.http.Response attribute), 144

196 Index

Scrapy Documentation, Release 0.18.4

T
TakeFirst (class in scrapy.contrib.loader.processor), 53
TELNETCONSOLE_ENABLED

setting, 156
TELNETCONSOLE_HOST

setting, 72
TELNETCONSOLE_PORT

setting, 72, 157
TEMPLATES_DIR

setting, 157
TextResponse (class in scrapy.http), 145

U
update_telnet_vars

signal, 72
update_telnet_vars() (in module scrapy.telnet), 72
url (scrapy.http.Request attribute), 140
url (scrapy.http.Response attribute), 144
UrlContract (class in scrapy.contracts.default), 86
URLLENGTH_LIMIT

setting, 157
UrlLengthMiddleware (class in

scrapy.contrib.spidermiddleware.urllength),
128

USER_AGENT
setting, 157

UserAgentMiddleware (class in
scrapy.contrib.downloadermiddleware.useragent),
124

V
version

command, 25
view

command, 24

W
WARNING (in module scrapy.log), 66
WEBSERVICE_ENABLED

setting, 74
WEBSERVICE_HOST

setting, 74
WEBSERVICE_LOGFILE

setting, 74
WEBSERVICE_PORT

setting, 74
ws_name (scrapy.contrib.webservice.enginestatus.scrapy.webservice.JsonResource

attribute), 75

X
XMLFeedSpider (class in scrapy.contrib.spiders), 34
XmlItemExporter (class in scrapy.contrib.exporter), 164
XmlResponse (class in scrapy.http), 146

XmlXPathSelector (class in scrapy.selector), 45
XPathItemLoader (class in scrapy.contrib.loader), 51
XPathSelector (class in scrapy.selector), 43
XPathSelectorList (class in scrapy.selector), 44

Index 197

	Getting help
	First steps
	Scrapy at a glance
	Installation guide
	Scrapy Tutorial
	Examples

	Basic concepts
	Command line tool
	Items
	Spiders
	Link Extractors
	Selectors
	Item Loaders
	Scrapy shell
	Item Pipeline
	Feed exports

	Built-in services
	Logging
	Stats Collection
	Sending e-mail
	Telnet Console
	Web Service

	Solving specific problems
	Frequently Asked Questions
	Debugging Spiders
	Spiders Contracts
	Common Practices
	Broad Crawls
	Using Firefox for scraping
	Using Firebug for scraping
	Debugging memory leaks
	Downloading Item Images
	Ubuntu packages
	Scrapyd
	AutoThrottle extension
	Benchmarking
	Jobs: pausing and resuming crawls
	DjangoItem

	Extending Scrapy
	Architecture overview
	Downloader Middleware
	Spider Middleware
	Extensions
	Core API

	Reference
	Requests and Responses
	Settings
	Signals
	Exceptions
	Item Exporters

	All the rest
	Release notes
	Contributing to Scrapy
	Versioning and API Stability
	Experimental features

	Python Module Index

